Cereal grains, such as wheat, barley, rice, rye, oat, millet, sorghum, and corn, have been staples in human diets since ancient times. At present, there is a significant body of scientific evidence showing the health benefits of consuming whole grains in chronic disease prevention, particularly in regards to diabetes, cardiovascular disease, and cancer. The objective was to determine bioactive peptides in cereal grains that may prevent cardiovascular disease, cancer, inflammation, and diabetes. Bioactive peptides that may be obtained from cereal grains, particularly wheat, oat, barley, and rice, were identified. Bioactive peptides that play a role in chronic disease prevention have been found primarily in legumes and dairy products; although research connecting cereal grains with potential bioactive peptide activity is limited. In this review, 4 cereal grains, wheat, oat, barley, and rice, were evaluated for bioactive peptide potential using the BIOPEP database. In addition, research information was compiled for each grain regarding evidence about the effect of their proteins in prevention of chronic diseases. All 4 grains showed high occurrence frequencies of angiotensin-converting enzyme-inhibitor peptides (A = 0.239 to 0.511), as well as of dipeptidyl peptidase-inhibitor and antithrombotic, antioxidant, hypotensive, and opioid activity. Wheat and rice proteins had anticancer sequences present. Wheat and barley showed the greatest diversity and abundance of potential biological activity among the cereal proteins. Further research needs to be conducted to learn how these biologically active peptide sequences are released from cereal grains. This study supports the notion that cereal grains are a nutritious part of a healthy diet by preventing chronic diseases.
Lunasin is a bioactive peptide present in soybean. It is important to quantify lunasin concentration in soy products to assess its potential impact as functional food. The objectives of this study were to analyze lunasin in commercial soymilk products and implement an efficient method to isolate and purify it from defatted soybean flour. Defatted soybean flour was suspended in water, and the extract was loaded in a pre-equilibrated diethylaminoethyl column and bound proteins eluted using a step gradient of salt. Most lunasin was eluted from the column at 0.2 to 0.4M NaCl as quantified by immunoassays and purified using ultracentrifugation and ultrafiltration techniques. Lunasin purity was ≥90% and a standard curve was used to quantify its concentration in soymilk products. Concentration of lunasin in soy products, including organic soymilk, soy protein shakes, and soy infant formulas, ranged from 1.78 to 9.26 mg lunasin/100 g product. The concentration per serving ranged from 1.59 ± 0.01 to 22.23 ± 0.74 mg lunasin with variability depending on brand and size per serving. Steam-ground-cooked soy had the highest concentration of lunasin (22.23 ± 0.74 mg/serving), similar to some commercial products. Ground-cooked soymilk contained roughly half the concentration of lunasin (14.39 ± 1.4 mg/serving). Soy infant formulas that used soy protein isolate revealed lower concentrations of lunasin (P < 0.05). It was concluded that all soymilk products analyzed contained lunasin, and a more efficient method to isolate lunasin with higher purity was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.