BackgroundThe search for cluster structure in microarray datasets is a base problem for the so-called "-omic sciences". A difficult problem in clustering is how to handle data with a manifold structure, i.e. data that is not shaped in the form of compact clouds of points, forming arbitrary shapes or paths embedded in a high-dimensional space, as could be the case of some gene expression datasets.ResultsIn this work we introduce the Penalized k-Nearest-Neighbor-Graph (PKNNG) based metric, a new tool for evaluating distances in such cases. The new metric can be used in combination with most clustering algorithms. The PKNNG metric is based on a two-step procedure: first it constructs the k-Nearest-Neighbor-Graph of the dataset of interest using a low k-value and then it adds edges with a highly penalized weight for connecting the subgraphs produced by the first step. We discuss several possible schemes for connecting the different sub-graphs as well as penalization functions. We show clustering results on several public gene expression datasets and simulated artificial problems to evaluate the behavior of the new metric.ConclusionsIn all cases the PKNNG metric shows promising clustering results. The use of the PKNNG metric can improve the performance of commonly used pairwise-distance based clustering methods, to the level of more advanced algorithms. A great advantage of the new procedure is that researchers do not need to learn a new method, they can simply compute distances with the PKNNG metric and then, for example, use hierarchical clustering to produce an accurate and highly interpretable dendrogram of their high-dimensional data.
Clustering validation indexes are intended to assess the goodness of clustering results. Many methods used to estimate the number of clusters rely on a validation index as a key element to find the correct answer. This paper presents a new validation index based on graph concepts, which has been designed to find arbitrary shaped clusters by exploiting the spatial layout of the patterns and their clustering label. This new clustering index is combined with a solid statistical detection framework, the gap statistic. The resulting method is able to find the right number of arbitrary-shaped clusters in diverse situations, as we show with examples where this information is available. A comparison with several relevant validation methods is carried out using artificial and gene expression data sets. The results are very encouraging, showing that the underlying structure in the data can be more accurately detected with the new clustering index. Our gene expression data results also indicate that this new index is stable under perturbation of the input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.