No abstract
While egocentric video is becoming increasingly popular, browsing it is very difficult. In this paper we present a compact 3D Convolutional Neural Network (CNN) architecture for long-term activity recognition in egocentric videos. Recognizing long-term activities enables us to temporally segment (index) long and unstructured egocentric videos. Existing methods for this task are based on hand tuned features derived from visible objects, location of hands, as well as optical flow.Given a sparse optical flow volume as input, our CNN classifies the camera wearer's activity. We obtain classification accuracy of 89%, which outperforms the current state-of-the-art by 19%. Additional evaluation is performed on an extended egocentric video dataset, classifying twice the amount of categories than current state-of-the-art. Furthermore, our CNN is able to recognize whether a video is egocentric or not with 99.2% accuracy, up by 24% from current state-of-the-art. To better understand what the network actually learns, we propose a novel visualization of CNN kernels as flow fields.
Speechreading is a notoriously difficult task for humans to perform. In this paper we present an end-to-end model based on a convolutional neural network (CNN) for generating an intelligible acoustic speech signal from silent video frames of a speaking person. The proposed CNN generates sound features for each frame based on its neighboring frames. Waveforms are then synthesized from the learned speech features to produce intelligible speech. We show that by leveraging the automatic feature learning capabilities of a CNN, we can obtain state-of-the-art word intelligibility on the GRID dataset, and show promising results for learning out-of-vocabulary (OOV) words.
Fig. 1. We present a model for isolating and enhancing the speech of desired speakers in a video. (a) The input is a video (frames + audio track) with one or more people speaking, where the speech of interest is interfered by other speakers and/or background noise. (b) Both audio and visual features are extracted and fed into a joint audio-visual speech separation model. The output is a decomposition of the input audio track into clean speech tracks, one for each person detected in the video (c). This allows us to then compose videos where speech of specific people is enhanced while all other sound is suppressed. Our model was trained using thousands of hours of video segments from our new dataset, AVSpeech. The "Stand-Up" video (a) is courtesy of Team Coco.We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over stateof-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.