Further improvements in wheat yields are critical, for which increases in grain number would be required. In the recent past, higher grain number was achieved through increased growth of the juvenile spikes before anthesis, due to the reduction in stem growth. As current cultivars have already an optimum height, alternatives must be identified for further increasing grain number. One of them is increasing fruiting efficiency (grains set per unit of spike dry weight at anthesis). Fruiting efficiency is the final outcome of the fate of floret development and differences in this trait within modern cultivars would be related to higher survival of floret primordia. Then there are two alternative physiological pathways to improve fruiting efficiency by allowing a normal development of most vulnerable floret primordia: an increased allocation of assimilates for the developing florets before anthesis, or reduced demand of the florets for maintaining their normal development. Both alternatives may be possible, and it might be critical to recognize which of them is the actual cause of differences in fruiting efficiency. When considering this trait in breeding we must be aware of potential trade‐offs and therefore it must be avoided that increases in fruiting efficiency be constitutively related to decreases in either spike dry weight at anthesis or grain weight. In this review we described fruiting efficiency and its physiological bases, analyzing genetic variation and considering potential drawbacks that must be taken into account to avoid increases in fruiting efficiency being compensated by other traits.
Wheat yield depends on the number of grains per square metre, which in turn is related to the number of fertile florets at anthesis. The dynamics of floret generation/degeneration were studied in contrasting conditions of nitrogen (N) and water availability of modern, well-adapted, durum wheats in order to understand further the bases for grain number determination. Experiments were carried out during the 2008–2009 and 2009–2010 growing seasons at Lleida (NE Spain). The first experiment involved four cultivars (Claudio, Donduro, Simeto, and Vitron) and two contrasting N availabilities (50 kgN ha–1 and 250 kgN ha–1; N50 and N250) while experiment 2 included the two cultivars most contrasting in grain setting responsiveness to N in experiment 1, and two levels of N (N50 and N250), under irrigated (IR) and rainfed (RF) conditions. In addition, a detillering treatment was imposed on both cultivars under the IR+N250 condition. The number of fertile florets at anthesis was increased by ~30% in response to N fertilization (averaging across treatments and spikelet positions). The effect of N and water availability was evident on floret developmental rates from the third floret primordium onwards, as these florets in the central spikelets of all genotypes reached the stage of a fertile floret in N250 while in N50 they did not. In this study, clear differences were found between the cultivars in their responsiveness to N by producing more fertile florets at anthesis (through accelerating developmental rates of floret primordia), by increasing the likelihood of particular grains to be set, or by both traits.
In Mediterranean durum wheat production, nitrogen (N) fertilization may be important to stabilize and increase yields. Wheat yield responses to N fertilization are usually related to grains per m2, which in turn is the consequence of processes related to floret development (floret initiation followed by floret death/survival) during stem elongation. The literature is rather scarce in terms of the relevance of floret developmental dynamics, determining the final number of grains in general terms and in particular regarding responsiveness to N. The aim of this study was to determine whether durum wheat responses to N under different water regimes are related to the dynamics of development of floret primordia to produce fertile florets. During the 2006–2007 and 2007–2008 growing seasons, experiments with a factorial combination of two N levels (0 and 100 or 250 kg N ha−1) and two levels of water availability (rainfed and irrigated) were carried out (although the water regime was only effective in the second season). The response of yield was largely a consequence of that in grain number per spike. Floret initiation was similar for both N levels in each experiment and water regime, for which the survival of a higher proportion of initiated florets was critical in the response of the crop. The diminished rate of floret abortion during the late part of stem elongation in response to N was associated with a slightly accelerated rate of floret development which allowed a higher proportion of the primordia initiated to reach the stage of fertile floret by flowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.