Preservation using combinations of antibacterial molecules has several advantages, such as reducing the level of usage and broadening their antimicrobial spectrum. More specifically, the use of quaternary ammonium surfactants (QAS)—which are profusely used in hair care products and some are known as efficient antimicrobial agents—is limited due to some potential cytotoxicity concerns. This study shows that the concentration of some widely used cosmetic preservatives can be decreased when combined with very small quantities of QAS, i.e., Polyquaternium-80 (P-80) and/or Didecyldimethylammonium chloride (DDAC). The antimicrobial activity of their mixtures was first evaluated by determining the minimum inhibitory concentration (MIC) before and after the addition of QAS. Following up on this finding and targeting an ultimate consumer friendly antimicrobial blend, yet with optimal safety, we chose to utilize the food-grade preservative Maltol as the main natural origin antimicrobial agent mixed with minimum concentrations of QAS to improve its moderate antimicrobial properties. The preservatives were tested for MIC values, challenge tests and synergy using the fractional inhibitory concentration index (FICI). The antimicrobial efficacy of Maltol was found to be synergistically improved by introducing catalytic amounts of P-80 and/or DDAC.
Over the last two decades, significant advances have been made in developing disposable baby wet wipes. Wet wipes consist of two main components: nonwoven fabric and liquid. Being more than 90% water, wet wipes are more susceptible to microbial growth than typical personal care products; hence, high concentrations of preservative compounds are often used to ensure extended protection against contamination. However, there is an obvious tendency to minimize the concentration of irritating actives. Baby wet wipes should contain particularly mild surfactants, well-tolerated preservatives, and a buffer system maintaining the formulation pH at a suitable level for the infant’s skin. Efforts have been centered on removing ingredients with irritation potential, such as phenoxyethanol. In addition, a move towards more natural fabrics is occurring. However, these modifications provoke new challenges in preserving the final products. The nature and composition of the fiber can influence the interactions between the preservative and the wipe, subsequently affecting the performance of the preservative system. In this study, we analyzed the causes of the challenge in preserving wet wipes. We found that fabrics containing natural fibers are the main source of contamination, promoting the generation of biofilms on their surfaces. Moreover, the hydrophilic–lipophilic balance (HLB) was utilized to rationalize the physicochemical interactions between the fabric and the preservatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.