Background: Recently discovered relationships between the gastrointestinal microbiome and the brain have implications for psychiatric disorders, including major depressive disorder (MDD). Bacterial transplantation from MDD patients to rodents produces depression-like behaviors. In humans, case-control studies have examined the gut microbiome in healthy and affected individuals. We systematically reviewed existing studies comparing gut microbial composition in MDD and healthy volunteers.Methods: A PubMed literature search combined the terms “depression,” “depressive disorder,” “stool,” “fecal,” “gut,” and “microbiome” to identify human case-control studies that investigated relationships between MDD and microbiota quantified from stool. We evaluated the resulting studies, focusing on bacterial taxa that were different between MDD and healthy controls.Results: Six eligible studies were found in which 50 taxa exhibited differences (p < 0.05) between patients with MDD and controls. Patient characteristics and methodologies varied widely between studies. Five phyla—Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria, and Protobacteria—were represented; however, divergent results occurred across studies for all phyla. The largest number of differentiating taxa were within phylum Firmicutes, in which nine families and 12 genera differentiated the diagnostic groups. The majority of these families and genera were found to be statistically different between the two groups in two identified studies. Family Lachnospiraceae differentiated the diagnostic groups in four studies (with an even split in directionality). Across all five phyla, nine genera were higher in MDD (Anaerostipes, Blautia, Clostridium, Klebsiella, Lachnospiraceae incertae sedis, Parabacteroides, Parasutterella, Phascolarctobacterium, and Streptococcus), six were lower (Bifidobacterium, Dialister, Escherichia/Shigella, Faecalibacterium, and Ruminococcus), and six were divergent (Alistipes, Bacteroides, Megamonas, Oscillibacter, Prevotella, and Roseburia). We highlight mechanisms and products of bacterial metabolism as they may relate to the etiology of depression.Conclusions: No consensus has emerged from existing human studies of depression and gut microbiome concerning which bacterial taxa are most relevant to depression. This may in part be due to differences in study design. Given that bacterial functions are conserved across taxonomic groups, we propose that studying microbial functioning may be more productive than a purely taxonomic approach to understanding the gut microbiome in depression.
We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8 ؉ T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control-that is, some epitopes are protective rather than merely associated with control-and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCESome individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8 ؉ T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans.
Background The clinical consequences of the magnitude and the duration of detectable viremia in HIV-infected children have not been well characterized. We examined the predictors and immunologic consequences over time of frequent episodes of detectable viremia in HIV-infected children followed at Yale-New Haven Hospital. Methods We analyzed the CD4+ T-cell and HIV viral load over a 19-year period (1996 to 2013) of 104 HIV-infected children enrolled in the Yale Prospective Longitudinal Pediatric HIV Cohort. Both CD4+ T-lymphocytes and HIV viral load were measured at clinic visits every 3 to 4 months. Longitudinal data analyses using polynomial random coefficients models were conducted to examine overtime changes in CD4+ T-cell counts by frequency of episodes of detectable viremia. Moreover, regression analyses using logistic regression models were used to assess the predictors of frequent episodes of detectable viremia. Results One hundred and four (104) HIV-infected children with more than one HIV viral load measurement between 1996 and November 2013 were included in the analysis. Over 80% (N=86) of the children had detectable viral load (HIV RNA viral load ≥50 copies/ml) during more than 50% of their clinic visits. Children with infrequent episodes of detectable viremia had significantly higher CD4+ T-cell counts overtime compared to those with frequent episodes of detectable viremia (P<0.0001). Conclusions Both frequency and magnitude of episodes of detectable viremia had effect on CD4+ T-cells. Strict adherence to a treatment goal of undetectable HIV viremia in children is likely to be beneficial.
IntroductionAn effective prophylactic vaccine against HIV will need to elicit antibody responses capable of recognizing and neutralizing rapidly evolving antigenic regions. The immunologic milieu associated with development of neutralizing antibody breadth remains to be fully defined. In this study, we sought to identify immunological signatures associated with neutralization breadth in HIV controllers. We applied an immune monitoring approach to analyze markers of T cell and myeloid cell activation by flow cytometry, comparing broad neutralizers with low- and non-neutralizers using multivariate and univariate analyses.MethodsAntibody neutralization breadth was determined, and cryopreserved peripheral blood mononuclear cells were stained for T cell and myeloid cell activation markers. Subjects were grouped according to neutralization breadth, and T cell and myeloid cell activation was analyzed by partial least squares discriminant analysis to determine immune signatures associated with high neutralization breadth.ResultsWe show that neutralization breadth in HIV viraemic controllers (VC) was strongly associated with increased frequencies of CD8+CD57+ T cells and that this association was independent of viral load, CD4 count and time since HIV diagnosis.ConclusionsOur data show elevated frequencies of CD8+CD57+ T cells in VC who develop neutralization breadth against HIV. This immune signature could serve as a potential biomarker of neutralization breadth and should be further investigated in other HIV-positive cohorts and in HIV vaccine trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.