Transposable elements (TEs) are extremely abundant in complex plant genomes. siRNAs of 24 nucleotides in length control transposon activity in a process that involves de novo methylation of targeted loci. Usually, these epigenetic modifications trigger nucleosome condensation and a permanent silencing of the affected loci. Here, we show that a TE-derived inverted repeat (IR) element, inserted near the sunflower HaWRKY6 locus, dynamically regulates the expression of the gene by altering chromatin topology. The transcripts of this IR element are processed into 24-nt siRNAs, triggering DNA methylation on its locus. These epigenetic marks stabilize the formation of tissue-specific loops in the chromatin. In leaves, an intragenic loop is formed, blocking HaWRKY6 transcription. While in cotyledons (Cots), formation of an alternative loop, encompassing the whole HaWRKY6 gene, enhances transcription of the gene. The formation of this loop changes the promoter directionality, reducing IR transcription, and ultimately releasing the loop. Our results provide evidence that TEs can act as active and dynamic regulatory elements within coding loci in a mechanism that combines RNA silencing, epigenetic modification, and chromatin remodeling machineries.
An intrinsically disordered protein interacts with HYPONASTIC LEAVES1 and ARGONAUTE1 in a post-miRNA processing complex to promote ARGONAUTE1 stability and miRNA activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.