Neural networks (NN) are used in high-performance computing and high-throughput analysis to extract knowledge from datasets. Neural architecture search (NAS) automates NN design by generating, training, and analyzing thousands of NNs. However, NAS requires massive computational power for NN training. To address challenges of efficiency and scalability, we propose PENGUIN, a decoupled fitness prediction engine that informs the search without interfering in it. PENGUIN uses parametric modeling to predict fitness of NNs. Existing NAS methods and parametric modeling functions can be plugged into PENGUIN to build flexible NAS workflows. Through this decoupling and flexible parametric modeling, PENGUIN reduces training costs: it predicts the fitness of NNs, enabling NAS to terminate training NNs early. Early termination increases the number of NNs that fixed compute resources can evaluate, thus giving NAS additional opportunity to find better NNs. We assess the effectiveness of our engine on 6,000 NNs across three diverse benchmark datasets and three state of the art NAS implementations using the Summit supercomputer. Augmenting these NAS implementations with PENGUIN can increase throughput by a factor of 1.6 to 7.1. Furthermore, walltime tests indicate that PENGUIN can reduce training time by a factor of 2.5 to 5.3.
Neural Networks (NNs) are increasingly used across scientific domains to extract knowledge from experimental or computational data. An NN is composed of natural or artificial neurons that serve as simple processing units and are interconnected into a model architecture; it acquires knowledge from the environment through a learning process and stores this knowledge in its connections. The learning process is conducted by training. During NN training, the learning process can be tracked by periodically validating the NN and calculating its fitness. The resulting sequence of fitness values (i.e., validation accuracy or validation loss) is called the NN learning curve. The development of tools for NN design requires knowledge of diverse NNs and their complete learning curves. Generally, only final fully-trained fitness values for highly accurate NNs are made available to the community, hampering efforts to develop tools for NN design and leaving unaddressed aspects such as explaining the generation of an NN and reproducing its learning process. Our dataset fills this gap by fully recording the structure, metadata, and complete learning curves for a wide variety of random NNs throughout their training. Our dataset captures the lifespan of 6000 NNs throughout generation, training, and validation stages. It consists of a suite of 6000 tables, each table representing the lifespan of one NN. We generate each NN with randomized parameter values and train it for 40 epochs on one of three diverse image datasets (i.e., CIFAR-100, FashionMNIST, SVHN). We calculate and record each NN’s fitness with high frequency—every half epoch—to capture the evolution of the training and validation process. As a result, for each NN, we record the generated parameter values describing the structure of that NN, the image dataset on which the NN trained, and all loss and accuracy values for the NN every half epoch. We put our dataset to the service of researchers studying NN performance and its evolution throughout training and validation. Statistical methods can be applied to our dataset to analyze the shape of learning curves in diverse NNs, and the relationship between an NN’s structure and its fitness. Additionally, the structural data and metadata that we record enable the reconstruction and reproducibility of the associated NN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.