Summary The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large data sets—which are increasingly prevalent—the calculation of bootstrap‐based quantities can be prohibitively demanding computationally. Although variants such as subsampling and the m out of n bootstrap can be used in principle to reduce the cost of bootstrap computations, these methods are generally not robust to specification of tuning parameters (such as the number of subsampled data points), and they often require knowledge of the estimator's convergence rate, in contrast with the bootstrap. As an alternative, we introduce the ‘bag of little bootstraps’ (BLB), which is a new procedure which incorporates features of both the bootstrap and subsampling to yield a robust, computationally efficient means of assessing the quality of estimators. The BLB is well suited to modern parallel and distributed computing architectures and furthermore retains the generic applicability and statistical efficiency of the bootstrap. We demonstrate the BLB's favourable statistical performance via a theoretical analysis elucidating the procedure's properties, as well as a simulation study comparing the BLB with the bootstrap, the m out of n bootstrap and subsampling. In addition, we present results from a large‐scale distributed implementation of the BLB demonstrating its computational superiority on massive data, a method for adaptively selecting the BLB's tuning parameters, an empirical study applying the BLB to several real data sets and an extension of the BLB to time series data.
In today's heavily overparameterized models, the value of the training loss provides few guarantees on model generalization ability. Indeed, optimizing only the training loss value, as is commonly done, can easily lead to suboptimal model quality. Motivated by the connection between geometry of the loss landscape and generalization-including a generalization bound that we prove here-we introduce a novel, effective procedure for instead simultaneously minimizing loss value and loss sharpness. In particular, our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie in neighborhoods having uniformly low loss; this formulation results in a min-max optimization problem on which gradient descent can be performed efficiently. We present empirical results showing that SAM improves model generalization across a variety of benchmark datasets (e.g., CIFAR-{10, 100}, ImageNet, finetuning tasks) and models, yielding novel state-of-the-art performance for several. Additionally, we find that SAM natively provides robustness to label noise on par with that provided by state-of-the-art procedures that specifically target learning with noisy labels. * Work done as part of the Google AI Residency program.
The mechanical unfolding of proteins under a stretching force has an important role in living systems and is a logical extension of the more general protein folding problem. Recent advances in experimental methodology have allowed the stretching of single molecules, thus rendering this process ripe for computational study. We use all-atom Monte Carlo simulation with a Gō-type potential to study the mechanical unfolding pathway of ubiquitin. A detailed, robust, well-defined pathway is found, confirming existing results in this vein though using a different model. Additionally, we identify the protein's fundamental stabilizing secondary structure interactions in the presence of a stretching force and show that this fundamental stabilizing role does not persist in the absence of mechanical stress. The apparent success of simulation methods in studying ubiquitin's mechanical unfolding pathway indicates their potential usefulness for future study of the stretching of other proteins and the relationship between protein structure and the response to mechanical deformation.
As datasets become larger, more complex, and more available to diverse groups of analysts, it would be quite useful to be able to automatically and generically assess the quality of estimates, much as we are able to automatically train and evaluate predictive models such as classifiers. However, despite the fundamental importance of estimator quality assessment in data analysis, this task has eluded highly automatic solutions. While the bootstrap provides perhaps the most promising step in this direction, its level of automation is limited by the difficulty of evaluating its finite sample performance and even its asymptotic consistency. Thus, we present here a general diagnostic procedure which directly and automatically evaluates the accuracy of the bootstrap's outputs, determining whether or not the bootstrap is performing satisfactorily when applied to a given dataset and estimator. We show that our proposed diagnostic is effective via an extensive empirical evaluation on a variety of estimators and simulated and real datasets, including a real-world query workload from Conviva, Inc. involving 1.7TB of data (i.e., approximately 0.5 billion data points).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.