Greenhouse cultivation is highly efficient in the use of water and fertilizers. However, due to intensive production, the greenhouse industry applies ample amounts of water and fertilizers. An alternative to minimize water and nutrient loss is zero-leaching systems, such as closed-loop subirrigation. The objective of the present study was to compare the water and fertilizer use efficiency in containerized tomato plants grown in a subirrigation system and a drip irrigation system. Subirrigated plants exhibited lower biomass than drip-irrigated plants. However, the amount of nutrient solution required to restore evapotranspirated water was lower in subirrigation. The yield was marginally decreased in subirrigated plants compared to drip-irrigated plants. The amount of nutrient solution required to produce 1 kg of fresh tomatoes was 22 L in subirrigation, whereas in drip irrigation, plants demanded 41 L. The total nitrogen applied through the nutrient solution was 75% lower in subirrigation than in drip irrigation, while the phosphorus, potassium, calcium and magnesium applied was 66%, 59%, 70% and 74% lower, respectively. We concluded that the subirrigation system proved to be more water- and nutrient-efficient than the drip irrigation system due to the zero leaching of the nutrient solution, the lower number of irrigation events required and the lower nutrient demand of plants.
Sub-irrigation of greenhouse crops has the potential to increase water and nutrient use efficiency; however, fertilizer salts that are not absorbed by the plants tend to accumulate in the substrate and eventually raise the substrate’s electrical conductivity (EC). The objective of this study was to determine the optimum EC of the nutrient solution in sub-irrigated tomatoes to allow maximum yield. Total fruit yield was higher in sub-irrigated plants with solutions at 2.0 dS m−1 (5105 g per plant), and it was comparable to that obtained for drip-irrigated plants (4903 g per plant); however, the yield of fruits from the second truss was 37% higher in sub-irrigated than in drip-irrigated plants when the EC was 2.0 dS m−1. In contrast, at the end of the growing season, the yield of plants sub-irrigated with nutrient solutions of 2.0 dS m−1 was the lowest, being surpassed by 37% by that of plants treated with 1.4 dS m−1. The dry weight of vegetative plant parts was reduced in sub-irrigated plants, suggesting a shift in dry mass partitioning. Our results show that with sub-irrigation, the growing season should be started using nutrient solutions with higher EC, but eventually, this EC should be decreased to maintain proper substrate EC and high yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.