Magnetic tweezers are used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model of the chromatin 3-D architecture. In this model, we assume the existence of a dynamic equilibrium between three conformations of the nucleosome, which are determined by the crossing status of the entry/exit DNAs (positive, null or negative). Torsional strain, in displacing that equilibrium, extensively reorganizes the fiber architecture. The model explains a number of long-standing topological questions regarding DNA in chromatin, and may provide the ground to better understand the dynamic binding of most chromatin-associated proteins.
Using magnetic tweezers to investigate the mechanical response of single chromatin fibers, we show that fibers submitted to large positive torsion transiently trap positive turns at a rate of one turn per nucleosome. A comparison with the response of fibers of tetrasomes (the [H3-H4](2) tetramer bound with approximately 50 bp of DNA) obtained by depletion of H2A-H2B dimers suggests that the trapping reflects a nucleosome chiral transition to a metastable form built on the previously documented right-handed tetrasome. In view of its low energy, <8 kT, we propose that this transition is physiologically relevant and serves to break the docking of the dimers on the tetramer that in the absence of other factors exerts a strong block against elongation of transcription by the main RNA polymerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.