The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.
Chromosome dynamics are recognized to be intimately linked to genomic transactions, yet the physical principles governing spatial fluctuations of chromatin are still a matter of debate. Using high-throughput single-particle tracking, we recorded the movements of nine fluorescently labeled chromosome loci located on chromosomes III, IV, XII, and XIV of Saccharomyces cerevisiae over an extended temporal range spanning more than four orders of magnitude (10 -2 -10 3 sec). Spatial fluctuations appear to be characterized by an anomalous diffusive behavior, which is homogeneous in the time domain, for all sites analyzed. We show that this response is consistent with the Rouse polymer model, and we confirm the relevance of the model with Brownian dynamics simulations and the analysis of the statistical properties of the trajectories. Moreover, the analysis of the amplitude of fluctuations by the Rouse model shows that yeast chromatin is highly flexible, its persistence length being qualitatively estimated to <30 nm. Finally, we show that the Rouse model is also relevant to analyze chromosome motion in mutant cells depleted of proteins that bind to or assemble chromatin, and suggest that it provides a consistent framework to study chromatin dynamics. We discuss the implications of our findings for yeast genome architecture and for target search mechanisms in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.