Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNAseq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC.is a global public health concern, especially for women (1). In the United States alone, 7-11 million cases of UTI are reported annually resulting in expenditures of $3.5 billion (2, 3). UPEC is the predominant cause (75-95% of cases) of UTIs in otherwise healthy individuals (1). UTIs caused by UPEC are one of the most common indications for antibiotic prescription and rapid increase in antibiotic resistance in UPEC (4) requires development of next-generation therapeutic agents (5). A targeted approach that selectively diminishes in vivo fitness of pathogens has been proposed as a promising alternative to treatment with conventional antibiotics (6). The molecular mechanisms of UPEC pathogenesis have been extensively investigated, primarily using murine models (7-9). Identification of nextgeneration therapeutics against UPEC, however, requires a thorough knowledge of the fitness and virulence mechanisms involved in the pathogenesis of community-acquired UTIs in humans.Transcriptional profiling, a powerful functional genomic tool, can be used to elucidate host-pathogen interaction during infection (10, 11). UPEC represents a heterogeneous group of bacterial strains (12, 13) and DNA microarrays, based on the sequence of a pyelonephritis strain CFT073, were used in a previous study to determine UPEC genes highly expressed ...
Uropathogenic Escherichia coli (UPEC), the predominant cause of uncomplicated urinary tract infection (UTI), utilizes an array of outer membrane iron receptors to facilitate siderophore and heme import from within the iron-limited urinary tract. While these systems are required for UPEC in vivo fitness and are assumed to be functionally redundant, the relative contributions of specific receptors to pathogenesis are unknown. To delineate the relative roles of distinct UPEC iron acquisition systems in UTI, isogenic mutants in UPEC strain CFT073 or 536 lacking individual receptors were competed against one another in vivo in a series of mixed infections. When combinations of up to four mutants were coinoculated using a CBA/J mouse model of ascending UTI, catecholate receptor mutants (⌬fepA, ⌬iha, and ⌬iroN mutants) were equally fit, suggesting redundant function. However, noncatecholate siderophore receptor mutants, including the ⌬iutA aerobactin receptor mutant and the ⌬fyuA yersiniabactin receptor mutant, were frequently outcompeted by coinoculated mutants, indicating that these systems contribute more significantly to UPEC iron acquisition in vivo. A tissue-specific preference for heme acquisition was also observed, as a heme uptake-deficient ⌬hma ⌬chuA double mutant was outcompeted by siderophore receptor mutants specifically during kidney colonization. The relative contribution of each receptor to UTI only partially correlated with in vivo levels of receptor gene expression, indicating that other factors likely contributed to the observed fitness differences. Overall, our results suggest that UPEC iron receptors provide both functional redundancy and niche specificity for this pathogen as it colonizes distinct sites within the urinary tract.
Uncomplicated urinary tract infections (UTIs) are common, with nearly half of all women experiencing at least one UTI in their lifetime. This high frequency of infection results in huge annual economic costs, decreased workforce productivity and high patient morbidity. At least 80% of these infections are caused by uropathogenic Escherichia coli (UPEC). UPEC can reside side by side with commensal strains in the gastrointestinal tract and gain access to the bladder via colonization of the urethra. Antibiotics represent the current standard treatment for UTI; however, even after treatment, patients frequently suffer from recurrent infection with the same or different strains. In addition, successful long-term treatment has been complicated by a rise in both the number of antibiotic-resistant strains and the prevalence of antibiotic-resistance mechanisms. As a result, preventative approaches to UTI, such as vaccination, have been sought. This review summarizes recent advances in UPEC vaccine development and outlines future directions for the field.
Urinary tract infections (UTI) are common and represent a substantial economic and public health burden. Roughly 80% of these infections are caused by a heterogeneous group of uropathogenic Escherichia coli (UPEC) strains. Antibiotics are standard therapy for UTI, but a rise in antibiotic resistance has complicated treatment, making the development of a UTI vaccine more urgent. Iron receptors are a promising new class of vaccine targets for UTI, as UPEC require iron to colonize the iron-limited host urinary tract and genes encoding iron acquisition systems are highly expressed during infection. Previously, three of six UPEC siderophore and heme receptors were identified as vaccine candidates by intranasal immunization in a murine model of ascending UTI. To complete the assessment of iron receptors as vaccine candidates, an additional six UPEC iron receptors were evaluated. Of the six vaccine candidates tested in this study (FyuA, FitA, IroN, the gene product of the CFT073 locus c0294, and two truncated derivatives of ChuA), only FyuA provided significant protection (P ؍ 0.0018) against UPEC colonization. Intranasal immunization induced a robust and long-lived humoral immune response. In addition, the levels of FyuA-specific serum IgG correlated with bacterial loads in the kidneys [Spearman's rank correlation coefficient (14) ؍ ؊0.72, P ؍ 0.0018], providing a surrogate of protection. FyuA is the fourth UPEC iron receptor to be identified from our screens, in addition to IutA, Hma, and IreA, which were previously demonstrated to elicit protection against UPEC challenge. Together, these iron receptor antigens will facilitate the development of a broadly protective, multivalent UTI vaccine to effectively target diverse strains of UPEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.