Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to standard scaling on the bottom right.
AbstractEffective resizing of images should not only use geometric constraints, but consider the image content as well. We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion. A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function. By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image. By applying these operators in both directions we can retarget the image to a new size. The selection and order of seams protect the content of the image, as defined by the energy function. Seam carving can also be used for image content enhancement and object removal. We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process. By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size.
Video, like images, should support content aware resizing. We present video retargeting using an improved seam carving operator. Instead of removing 1D seams from 2D images we remove 2D seam manifolds from 3D space-time volumes. To achieve this we replace the dynamic programming method of seam carving with graph cuts that are suitable for 3D volumes. In the new formulation, a seam is given by a minimal cut in the graph and we show how to construct a graph such that the resulting cut is a valid seam. That is, the cut is monotonic and connected. In addition, we present a novel energy criterion that improves the visual quality of the retargeted images and videos. The original seam carving operator is focused on removing seams with the least amount of energy, ignoring energy that is introduced into the images and video by applying the operator. To counter this, the new criterion is looking forward in time-removing seams that introduce the least amount of energy into the retargeted result. We show how to encode the improved criterion into graph cuts (for images and video) as well as dynamic programming (for images). We apply our technique to images and videos and present results of various applications.
We present a review of the state of the art of segmentation and partitioning techniques of boundary meshes. Recently, these have become a part of many mesh and object manipulation algorithms in computer graphics, geometric modelling and computer aided design. We formulate the segmentation problem as an optimization problem and identify two primarily distinct types of mesh segmentation, namely part segmentation and surfacepatch segmentation. We classify previous segmentation solutions according to the different segmentation goals, the optimization criteria and features used, and the various algorithmic techniques employed. We also present some generic algorithms for the major segmentation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.