Abstract-Fine-grained, record-oriented write-ahead logging, as exemplified by systems like ARIES, has been the gold standard for relational database recovery. In this paper, we show that in modern high-throughput transaction processing systems, this is no longer the optimal way to recover a database system. In particular, as transaction throughputs get higher, ARIEs-style logging starts to represent a non-trivial fraction of the overall transaction execution time.We propose a lighter weight, coarse-grained command logging technique which only records the transactions that were executed on the database. It then does recovery by starting from a trans actionally consistent checkpoint and replaying the commands in the log as if they were new transactions. By avoiding the overhead of fine-grained logging of before and after images (both CPU complexity as well as substantial associated 110), command logging can yield significantly higher throughput at run-time.Recovery times for command logging are higher compared to an ARIEs-style physiological logging approach, but with the advent of high-availability techniques that can mask the outage of a recovering node, recovery speeds have become secondary in importance to run-time performance for most applications.We evaluated our approach on an implementation of TPC C in a main memory database system (VoltDB), and found that command logging can offer 1.5 x higher throughput than a main memory optimized implementation of ARIEs-style physiological logging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.