On the basis of pharmacokinetic values, minimum inhibitory concentrations of Rhodococcus equi isolates, and drug concentrations in PELF and bronchoalveolar cells, a single daily oral dose of 10 mg/kg may be appropriate for treatment of R. equi infections in foals. Persistence of high azithromycin concentrations in PELF and bronchoalveolar cells 48 hours after discontinuation of administration suggests that after 5 daily doses, oral administration at 48-hour intervals may be adequate.
The objective of this study was to determine the disposition of orally administered doxycycline in foals. Six healthy 4- to 8-week-old foals were used. Doxycycline was administered to each foal via the intragastric (IG) route at dosages of 10 and 20 mg/kg, in a cross-over design. After the first 10 mg/kg dose, five additional doses were administered at 12-h intervals. A microbiological assay was used to measure doxycycline activity in serum, urine, peritoneal fluid, synovial fluid, cerebrospinal (CSF), pulmonary epithelial lining fluid (PELF), and bronchoalveolar (BAL) cells. Following administration at 10 mg/kg, mean+/-SD time to peak serum doxycycline activity (tmax) was 3.0+/-1.2 h, maximum serum activity (Cmax) was 2.54+/-0.27 microg/mL, and terminal half-life (t1/2) was 8.5+/-2.8 h. Administration at a dose of 20 mg/kg resulted in a significantly longer tmax (5.5+/-1.8 h) as well as a tendency toward higher Cmax (2.89+/-0.33 microg/mL) and longer t1/2 (11.9+/-2.6 h). After multiple IG doses, doxycycline activity in CSF was significantly lower than concurrent serum activity, whereas peritoneal fluid, synovial fluid, and BAL cell doxycycline activity was similar to concurrent serum activity. Doxycycline activity in urine and PELF was significantly higher than that found at other sites. Oral administration at a dosage of 10 mg/kg every 12 h would maintain serum, PELF, and BAL cell activity above the minimum inhibitory concentrations of Rhodococcus equi, beta-hemolytic streptococci, and other susceptible bacterial pathogens for the entire dosing interval.
The objectives of this study were to determine the serum and pulmonary disposition of tilmicosin in foals and to investigate the in vitro activity of the drug against Rhodococcus equi and other common bacterial pathogens of horses. A single dose of a new fatty acid salt formulation of tilmicosin (10 mg/kg of body weight) was administered to seven healthy 5- to 8-week-old foals by the intramuscular route. Concentrations of tilmicosin were measured in serum, lung tissue, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils. Mean peak tilmicosin concentrations were significantly different between sampling sites with highest concentrations measured in blood neutrophils (66.01+/-15.97 microg/mL) followed by BAL cells (20.1+/-5.1 microg/mL), PELF (2.91+/-1.15 microg/mL), lung tissue (1.90+/-0.65 microg/mL), and serum (0.19+/-0.09 microg/mL). Harmonic mean terminal half-life in lung tissue (193.3 h) was significantly longer than that of PELF (73.3 h), bronchoalveolar cells (62.2 h), neutrophils (47.9 h), and serum (18.4 h). The MIC90 of 56 R. equi isolates was 32 microg/mL. Tilmicosin was active in vitro against most streptococci, Staphylococcus spp., Actinobacillus spp., and Pasteurella spp. The drug was not active against Enterococcus spp., Pseudomonas spp., and Enterobacteriaceae.
Oral administration of clarithromycin at 7.5 mg/kg every 12 hours maintains concentrations in serum, PELF, and BAL cells that are higher than the minimum inhibitory concentration (0.12 microg/mL) for Rhodococcus equiisolates for the entire 12-hour dosing interval.
Background: Gastric tonometry is commonly used in humans as an assessment of intestinal mucosal perfusion. Values in healthy foals are currently unknown.Hypothesis: Age, enteral feeding, and omeprazole administration would significantly alter gastric tonometry measurements in neonatal foals.Animals: Nine clinically normal foals were used to assess the effect of age and feeding, and 8 similar foals were used to assess the effect of omeprazole.Methods: At 1, 7, and 14 days of age, gastric intramucosal PCO 2 (PgCO 2 ) and arterial blood gas samples were obtained at baseline, immediately after feeding milk, and 1 and 2 hours after fasting for calculation of the intramucosal-arterial PCO 2 difference (DCO 2 ). To evaluate the effect of omeprazole, foals were evaluated twice as above, 2 hours after fasting, comparing administration of omeprazole to no drug.Results: There was a significant effect of age and feeding on PgCO 2 and DCO 2 , whereas arterial PCO 2 was not significantly affected by these factors. Postfeeding DCO 2 values were significantly lower than fasted values. Baseline and postfeeding DCO 2 increased with age. There was no significant effect of age on data collected after 1 or 2 hours of fasting. The 90% reference interval for DCO 2 data collected after fasting was 0-54 mmHg. Foals had a significantly higher mean gastric pH and significantly higher DCO 2 and PgCO 2 following omeprazole relative to no treatment.Conclusions and Clinical Importance: Because of the high and variable DCO 2 , which is exacerbated by omeprazole administration, the reference interval in foals is extremely wide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.