STMIK AKAKOM annually opens new student registration through offline and online media. Through online media, several media such as websites, social media and email are used. However, on media such as social media, there are questions that often arise regarding new student registration information. With limited human resources to always be online for 24 hours, an alternative model is needed to provide answers to these questions, even though the social media manager offline. Nowadays. In the term of technological developments, it is possible to create a model of knowledge base in the form of a summary of questions and answers to certain topics. This knowledge base can use as a model for creating a prototype application that can provide answers if there are questions related to new student registration. This study aims to provide convenience in the question and answer process by using a Google Dialogflow.
Cases of leptospirosis in Indonesia mainly occur in areas that often experience floods and areas where the majority of its citizens work as farmers. Special Region of Yogyakarta (DIY) was the province with the most leptospirosis cases in Indonesia in 2011. In 2010-2011 an extraordinary event (KLB) of leptospirosis occurred in Bantul district and in 2014 the number of leptospirosis cases in Bantul district increased by 76 cases.. Based on Kementerian Kesehatan report, data shows that there has been an outbreak of leptospirosis in Bantul , so in addition to epidemiological data necessary case information is also needed to determine the geographic case risk factors and mitigation efforts.In the processing of digital maps for GIS , often found important objects that are not appropriate in its processing can not even be excluded because of uncertainty owned. Applications are made in this study was built and designed by the architectural Tsukamoto fuzzy inference method for handling uncertainty. The results of the application is the visualization of the spread of the disease leptospirosis vulnerability maps based determinants that also involves uncertainty factors that will be resolved with the Tsukamoto fuzzy inference method for use as detection and prevention against the spread of disease leptospirosis in the future
STMIK AKAKOM Yogyakarta setiap tahunnya melakukan penerimaan mahasiswa baru yang dilakukan oleh bagian marketing dan admisi, penerimaan mahasiswa baru sangat penting untuk STMIK AKAKOM Yogyakarta karena operasional kampus dibiayai oleh pemasukan yang berasal dari SPP mahasiswa. Sehingga diperlukan suatu sistem untuk bisa melakukan prediksi jumlah mhasiswa baru setiap tahunnya, sebagai informasi bagi manajemen sebagai dasar pengelolaan kegiatan kampus.Naïve Bayes adalah pengklasifikasian statistik yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class. Naïve Bayes didasarkan pada teorema Bayes yang memiliki kemampuan klasifikasi seperti decision tree dan neural network. Naïve Bayes digunakan untuk memprediksi jumlah mahasiswa baru dengan menggunakan data pendaftar ulang di tahun sebelumnya yang memiliki atribut yaitu asal kota, gelombang, program studi, penghasilan orang tua, nilai U N dan status registrasi, sehingga pihak marketing dan admisi STMIK AKAKOM Yogyakarta mendapat gambaran jumlah mahasiswa baru ditahun depan.Hasil dari penelitian ini adalah sistem yang dapat memprediksi data dengan kelas yaitu registrasi dan tidak registrasi. Dari 1704 data testing yang di proses menggunakan sistem didapatkan hasil prediksi registrasi sebanyak 1226 data dan tidak registrasi 478 data. Untuk pengujian dari 731 data didapatkan hasil prediksi 679 data terprediksi benar dan 52 data salah prediksi. Tingkat akurasi probabilitas yang didapatkan sebesar 92,88%.
Berdasarkan peta Pariwisata Kabupaten Bantul, Kabupaten Bantul merupakan wilayah yang memilikilebih dari 70 (tujuh puluh) objek wisata yang tersebar di hampir seluruh wilayah. Salah satu wilayah diKabupaten Bantul yang memiliki potensi wisata adalah Kecamatan Imogiri. Kecamatan Imogiri tercatatmemiliki tiga desa wisata yaitu desa wisata Kebonagung, desa Wisata Karangtengah, serta yang terakhiradalah Desa Wisata Wukirsari. Desa Wukirsari sendiri memiliki 7 (tujuh) potensi wisata yang tersebardi beberapa dusun. Sementara itu, dengan pesatnya perkembangan teknologi digital selama ini danmeluasnya penggunaan sosial media, pola pemasaran pun kini telah bergeser ke arah pemasarandengan memanfaatkan media digital tersebut. Fenomena penggunaan media daring dalam pemasaranini mendorong kelompok sadar wisata Wukirsari untuk memaksimalkan teknologi komputer dan internetsebagai media untuk melakukan pemasaran secara online. Pemanfaatan website khusus wisata danmedia sosial bagi pengembangan pemasaran di Desa Wukirsari sangat memungkinkan untuk dilakukan,karena jika diperhitungkan mengenai jangkauan dan sebaran media online ini lebih besar dibandingkanmedia pemasaran yang kita kenal selama ini dengan model konvensional. Sehingga diharapkan dapatlebih mendorong kunjungan wisata ke Desa Wukirsari sehingga akan menambah pendapatan DesaWukirsari. Tujuan dari program pengabdian pada masyarakat ini adalah agar mitra memiliki pengetahuandan ketrampilan memanfaatkan media sosial dan internet sebagai media pemasaran digital. Selainitu agar mitra memiliki pemahaman dan pengetahuan mengenai konten untuk digital marketing. Untukmendukung sistem online marketing diberikan pelatihan penggunaan internet dan jejaring sosial sertaakan digunakan mailchimp sebagai sarana membantu penyebaran informasi produk.
Hijaiyah letters are Arabic spelling letters that are the original language of the Qur'an. Just like other types of letters, the hijaiyah has certain shapes and characteristics that will form a certain pattern. By using the concept of artificial neural networks, can dibanguun a system that can recognize the pattern by doing the previous training. One of the most commonly used meotodes in artificial neural network paradigms is the crawling or backpropagation buffer. This hijaiyah letters identification system is built using the handwritten hijaiyah image data of 150 images. The feature or feature taken from the image is the binary value of the letter pattern and the number of objects contained in the letters. Prior to the feature extraction process, the image first passes the preprocessing stage consisting of color binerization, object widening, cropping, and resizing. The result obtained by backpropagation method is the system is able to recognize handwriting hijaiyah pattern well. All training data have been correctly identified, while as many as 150 test data can be identified as 77 letters with an accuracy of 51.33%. This accuracy value is obtained with the architectural arrangement of the number of hidden layer neurons = 60, minimum error = 0.001 and maximum iteration = 10000.keyword:backpropagation, biner, hijaiyah, , pattern, preprocessing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.