BackgroundCentella asiatica (C. asiatica) was previously reported to have anti-hyperglycemic effects in animal diabetic model rats. However, its activity on organ and tissue level remains unstudied. Our study aims at exploring the possible effects, C. asiatica extract and insoluble fiber has on carbohydrate absorption, insulin secretion, insulin sensitivity and glucose utilization.MethodsFor primary evaluation of anti-hyperglycemic activity, we measured Fasting Blood Glucose and performed Glucose Tolerance Test, in type 2 diabetic rats. To further study the pancreatic effect and glucose utilization, plasma insulin concentration, insulin secreted from isolated rat islets and liver glycogen were assayed. Effect on carbohydrate break down was assayed using intestinal disaccharidase enzyme, α-amylase inhibition assays and Six-Segment study of the GI tract. Effect of C. asiatica on glucose absorption was studied by an in-situ, perfused, intestinal model in rats and by glucose-fiber binding assay. Gastrointestinal motility was seen by a BaSO4 milk traverse test. Additionally, a complete lipid profile assay, after a chronic study, was conducted.ResultsC. asiatica showed no significant change in insulin secretion in-vivo and in isolated rat islets. Additionally, no effect of the extract was seen on liver glycogen deposition. Retarded glucose absorption was seen in the in-situ perfused rat intestinal model at a dose. The extract was also found to inhibit action of both intestinal disaccharidase and α-amylase. This was confirmed, yet again, via the Six Segment study, where sucrose digestion was found to be inhibited throughout the length of the GI Tract. Significant glucose-fiber binding was demonstrated in the in-vitro models. During the chronic study, body mass of C. asiatica treated Type 2 diabetic rats returned to normal and their polydipsic and polyphagic conditions were also improved. Chronic treatment of C. asiatica also improved subject’s lipid profile.ConclusionA combination of in-vitro, in-vivo and in-situ tests confirmed the anti-hyperglycemic activity of C. asiatica and its tissue level mechanism. Further study is required to fully elucidate the effect this extract or the active compounds have on the individual glucose transporters and the precise mechanism of glucose-fiber binding.
IMPORTANCE Sodium glucose cotransporter 2 inhibitors reduce morbidity and mortality in patients with heart failure and reduced ejection fraction (HFrEF). Clinicians may find estimates of the projected long-term benefits of sodium glucose cotransporter 2 inhibitors a helpful addition to clinical trial results when communicating the benefits of this class of drug to patients. OBJECTIVE To estimate the projected long-term treatment effects of dapagliflozin in patients with HFrEF over the duration of a patient's lifetime.DESIGN, SETTING, AND PARTICIPANTS Exploratory analysis was performed of Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure (DAPA-HF), a phase 3 randomized, placebo-controlled clinical trial conducted at 410 sites in 20 countries. Patients with an ejection fraction less than or equal to 40% in New York Heart Association functional classification II to IV and elevated plasma levels of N-terminal pro B-type natriuretic peptide were enrolled between February 15, 2017, and August 17, 2018, with final follow-up on June 6, 2019. Mean (SD) duration of follow-up was 17.6 (5.2) months.INTERVENTIONS Dapagliflozin, 10 mg, once daily vs placebo in addition to standard therapy. MAIN OUTCOMES AND MEASURESThe primary composite outcome was time to first hospitalization for heart failure, urgent heart failure visit requiring intravenous therapy, or cardiovascular death. The trial results were extrapolated to estimate the projected long-term treatment effects of dapagliflozin over the duration of a patient's lifetime for the primary outcome and the secondary outcome of death from any cause.RESULTS A total of 4744 patients (1109 women [23.4%]; 3635 men [76.6%]) were randomized in DAPA-HF, with a mean (SD) age of 66.3 (10.9) years. The extrapolated mean event-free survival for an individual aged 65 years from a primary composite end point event was 6.2 years for placebo and 8.3 years for dapagliflozin, representing an event-free survival time gain of 2.1 years (95% CI, 0.8-3.3 years; P = .002). When considering death from any cause, mean extrapolated life expectancy for an individual aged 65 years was 9.1 years for placebo and 10.8 years for dapagliflozin, with a gain in survival of 1.7 years (95% CI, 0.1-3.3; P = .03) with dapagliflozin. Similar results were seen when extrapolated across the age range studied. In analyses of subgroups of patients in DAPA-HF, consistent benefits were seen with dapagliflozin on both event-free and overall survival. CONCLUSIONS AND RELEVANCEThese findings indicate that dapagliflozin provides clinically meaningful gains in extrapolated event-free and overall survival. These findings may be helpful in communicating the benefits of this treatment to patients with HFrEF.TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03036124
BackgroundThe study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris.Methodology/Principal FindingsAqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05). Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05). The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05).ConclusionFindings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in the anti-hyperglycemic activity of B. Vulgaris.
Objective: To determine whether the benefits of dapagliflozin in patients with heart failure and reduced ejection fraction (HFrEF) and type 2 diabetes in DAPA-HF varied by background glucose-lowering therapy (GLT). Research design and methods: We examined the effect of study treatment by the use or not of GLT, and by GLT classes and combinations. The primary outcome was a composite of worsening HF (hospitalization or urgent visit requiring intravenous therapy) or cardiovascular death. Results: In the 2139 type 2 diabetes patients, the effect of dapagliflozin on the primary outcome was consistent by GLT use/no use (hazard ratio 0.72 [95%CI 0.58-0.88] versus 0.86 [0.60-1.23]; P-interaction=0.39) and across GLT classes. Conclusions: In DAPA-HF, dapagliflozin improved outcomes irrespective of use/no use of GLT or by GLT type used in patients with type 2 diabetes and HFrEF.
OBJECTIVE Finerenone significantly improved cardiorenal outcomes in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) in the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease trial. We explored whether baseline HbA1c level and insulin treatment influenced outcomes. RESEARCH DESIGN AND METHODS Patients with T2D, urine albumin-to-creatinine ratio (UACR) of 30–5,000 mg/g, estimated glomerular filtration rate (eGFR) of 25 to <75 mL/min/1.73 m2, and treated with optimized renin–angiotensin system blockade were randomly assigned to receive finerenone or placebo. Efficacy outcomes included kidney (kidney failure, sustained decrease ≥40% in eGFR from baseline, or renal death) and cardiovascular (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) composite endpoints. Patients were analyzed by baseline insulin use and by baseline HbA1c <7.5% (58 mmol/mol) or ≥7.5%. RESULTS Of 5,674 patients, 3,637 (64.1%) received insulin at baseline. Overall, 5,663 patients were included in the analysis for HbA1c; 2,794 (49.3%) had baseline HbA1c <7.5% (58 mmol/mol). Finerenone significantly reduced risk of the kidney composite outcome independent of baseline HbA1c level and insulin use (Pinteraction = 0.41 and 0.56, respectively). Cardiovascular composite outcome incidence was reduced with finerenone irrespective of baseline HbA1c level and insulin use (Pinteraction = 0.70 and 0.33, respectively). Although baseline HbA1c level did not affect kidney event risk, cardiovascular risk increased with higher HbA1c level. UACR reduction was consistent across subgroups. Adverse events were similar between groups regardless of baseline HbA1c level and insulin use; few finerenone-treated patients discontinued treatment because of hyperkalemia. CONCLUSIONS Finerenone reduces kidney and cardiovascular outcome risk in patients with CKD and T2D, and risks appear consistent irrespective of HbA1c levels or insulin use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.