The use of the metastable equilibrium solubility (MES) concept to describe the solubility properties of carbonated apatites (CAPs) and human dental enamel (HE) has been well established in previous studies using a range of CAPs with varying carbonate contents and crystallinities. It was shown in these studies that the mean value of the CAP MES is directly related to the broadening parameter full width at half maximum (FWHM) of the 002 reflection of the X-ray diffraction profile. The apparent solubility of the CAPs increased monotonically with an increase in the broadening of the diffraction peaks, and when this peak broadening was taken into account, carbonate had no additional effect upon the MES. The broadening of the diffraction peaks has been used as an indicator of crystallinity, and is generally influenced by both crystallite size and microstrain. The purpose of the present study was to extract the crystallite size and microstrain parameters separately from the X-ray diffraction peaks and then to determine their relationships to the corresponding MES values. The samples studied were CAPs synthesized by precipitation from Ca(NO3)2 and NaH2PO4 solutions in carbonate containing media at temperatures of 95, 80, and 70 degrees C, and powdered HE. The crystallite size and microstrain parameters were determined simultaneously with the refinement of the structural parameters with the Rietveld method of whole-pattern-fitting structure-refinement. A modified pseudo-Voigt function was used to model the observed peak profiles. The MES distributions for the CAPs and HE were determined by a previously described method. The results of this study showed that the CAPs possessed an MES distribution and therefore provided further support that MES distribution is a common phenomenon, regardless of the method of CAP synthesis. The crystallite size decreased and the microstrain increased with increasing carbonate content and decreasing temperature of synthesis of the CAPs. A plot of the mean of the MES distribution versus the microstrain parameter showed that the apparent solubility of the CAPs and HE correlated very well with the microstrain parameter. On the other hand, a plot of the mean of the MES distribution versus the crystallite size parameter showed a poor correlation between MES and crystallite size. These findings support a view that microstrain, rather than crystallite size, is the dominant factor governing the effective solubility of the CAPs and dental enamel.
Toothpastes are the most universally accepted form of fluoride delivery for caries prevention. To provide anti-caries benefits, they must be able to release fluoride during the time of tooth brushing or post brushing into the oral cavity. However, there is no standard accepted procedure to measure how much fluoride in a toothpaste may be (bio) available for release. The European Organization for Caries Research proposed and supported a workshop with experts in fluoride analysis in toothpastes and representatives from industry. The objective of the workshop was to discuss issues surrounding fluoride analysis in toothpaste and reach consensus on terminology and best practices, wherever the available evidence allowed it. Participants received a background paper and heard presentations followed by structured discussion to define the problem. The group also reviewed evidence on the validity, reliability and feasibility of each technique (namely chromatography and fluoride electroanalysis) and discussed their strengths and limitations. Participants were able to reach a consensus on terminology and were also able to identify and summarize the advantages and disadvantages of each technique. However, they agreed that most currently available methods were developed for regulatory agencies several decades ago, utilizing the best available data from clinical trials then, but require to be updated. They also agreed that although significant advances to our understanding of the mechanism of action of fluoride in toothpaste have been achieved over the past 4 decades, this clearly is an extraordinarily complex subject and more work remains to be done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.