In this study, a new copolymer, which is a combination of two chemical structure (9,10-di(furan-2-yl)anthracene and 3,4-ethylenedioxythiophene was synthesized via electrochemical synthesis methods in the electrolyte medium of 0.1 M TBAPF 6 /ACN solution. PEDOT homopolymer was also electrosynthesized for comparator experiments of the polymer formations in the same medium. The characterizations of polymers were achieved with general optical and electrochemical characterization techniques. The corresponding electrochromic copolymer shows blue and lilac color in its neutral and oxidized states, respectively. The copolymer has an optical band gap of 1.65 eV and 24% optical contrast at 500 nm with a high coloration efficiency (170 cm 2 /C) and a fast switching time (1.0 s).
A new electrochromic copolymer based on 4,7-di(thiophen-2-yl)benzo[c] [ 1 , 2 , 5 ]thiadiazole and 3,4-ethylenedioxythiophene was successfully obtained via the electrochemical polymerization method in the medium of electrolyte solution, which consists of 0.1 M tetrabutylammonium hexafluorophosphate and dichloromethane. In order to compare the electrochemical and chemical properties of the copolymer, the benzothiodiazole derivative and 3,4-ethylenedioxythiophene (EDOT) monomers, which are parts of the copolymer, are electrochemically polymerized, separately in the same environment and concentration with the copolymer. Poly(4,7-di(thiophen-2-yl)benzo[c][ 1 , 2 , 5 ]thiadiazole) (P(TBT)) and poly(3,4-ethylenedioxythiophene) (PEDOT) polymers were obtained. Before starting the electrochemical synthesis, the initial oxidation potentials of the monomers that form the copolymer were compared via the cyclic voltammeter method in this solvent electrolyte medium. Then, electrochemical and spectroelectrochemical characterizations of electrochemically synthesized polymers and copolymers were performed. New copolymer shows metallic blue and centaury blue in its neutral and oxidized states, respectively with a low band gap of 1.32 eV. Moreover, the copolymer has a 59% optical contrast and high coloration efficiency (324 cm 2 C −1 ) at 585 nm with a switching time of 2.2 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.