Brake friction materials composed of eight to 20 ingredients in the formulation. Each ingredient has its own function in producing the stable coefficient of friction (COF) and acceptable wear rate. The goal of this work is to study the effect of different carbon volume percentage (vol. %) on the friction characteristics. Three samples were prepared through powder metalurgy process by varying the carbon vol. %. Each sample was subjected to specific gravity, porosity, hardness, chase friction and brake inertia dynamometer tests in accordance with international test procedures. All the entire three samples are sensitive to speed and temperature. COF increased in the early stage of braking. Upon reaching the degradation temperature of polymeric materials, the COF decreased gradually with increasing speed and temperature. The pad thickness loss and rotor roughness decreased with increasing vol. % of carbon in the formulation. Sample B is the best formulation based on the friction characteristics and pad thickness loss. Formulation of sample C is rejected due to lower COF even though has the lowest pad thickness loss. Sample A and sample B will be further analysed and evaluated on-road and reliability performance before can be commercialised and used on the road.
Micro Air Vehicle, or also commonly known as MAV, is a miniature aircraft that has been gaining interest in the industry. MAV is defined as a flying platform with 15cm wingspan and operates at a speed of around 10m/s. Recently, MAV has been exposed with the latest development and link towards the biologically-inspired designs such as morphing wing. Twist morphing wing is one of the latest MAV wing design developments. The application of Twist Morphing (TM) on MAV wing has been previously known to produce better aerodynamic performance. Previous study in washin TM wing has shown a promising possibility of generating higher lift force. Despite the benevolent performance exhibited by the washin TM wing, the lift distribution for the washout type of TM MAV is relatively unknown and still open to be explored. This is probably due to the lack of experimental test rig to produce the washout twist morphing motion on the MAV wing. Therefore, this research aims to produce a special test rig for washout TM wing that is compatible for wind tunnel experimental testing. By using the special test rig, the experimental investigation on the lift performance of washout TM MAV wing can be done. Based on the wing deformation results, it clearly shows that the proposed test rig is capable to produce up to 19.5mm tip deflection at the morphing point, which is also resulting in a significant morphing motion. Higher morphing force induces larger morphing motion. Based on the lift distribution results, they show that the morphing motion has significantly affected the overall lift distribution on the MAV wing. The morphing motion on TM wing has produced at least 17.6% and 5.33% lower CL and CLmax magnitude, respectively, with the membrane wing especially at the pre-stall region. However, the TM wing is still able to maintain the stall angle similar to the baseline wing at αstall= 31°. By maintaining high αstall value with lower CL and CLmax magnitude, TM wing produces more agility for the MAV maneuverability that will be useful for indoor mission or obstacle avoidance flight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.