Individualization of cancer management requires prognostic markers and therapy-predictive markers. Prognostic markers assess risk of disease progression independent of therapy, whereas therapypredictive markers identify patients whose disease is sensitive or resistant to treatment. We show that an experimentally derived IFN-related DNA damage resistance signature (IRDS) is associated with resistance to chemotherapy and/or radiation across different cancer cell lines. The IRDS genes STAT1, ISG15, and IFIT1 all mediate experimental resistance. Clinical analyses reveal that IRDS(؉) and IRDS(؊) states exist among common human cancers. In breast cancer, a seven-gene-pair classifier predicts for efficacy of adjuvant chemotherapy and for local-regional control after radiation. By providing information on treatment sensitivity or resistance, the IRDS improves outcome prediction when combined with standard markers, risk groups, or other genomic classifiers.
Motor neurons degenerate in amyotrophic lateral sclerosis (ALS). The mechanisms for this neuronal cell death are not known, although apoptosis has been implicated. Oxidative damage to DNA and activation of p53 has been identified directly in motor neurons in cases of ALS. We evaluated whether motor neuron degeneration in ALS is associated with changes in the levels and function of the multifunctional protein apurinic/apyrimidinic endonuclease (APE/Ref-1). APE/Ref-1 functions as an enzyme in the DNA base-excision repair pathway and as a redox-regulation protein for transcription factors. The protein level and localization of APE/Ref-1 are changed in ALS. Immunoblotting showed that APE/Ref-1 protein levels are increased in selectively vulnerable central nervous system (CNS) regions in individuals with ALS compared to age-matched controls. Plasmid DNA repair assay demonstrated that APE from individuals with ALS is competent in repairing apurinic (AP) sites. DNA repair function in nuclear fractions is increased significantly in ALS motor cortex and spinal cord. Immunocytochemistry and single-cell densitometry revealed that APE/Ref-1 is expressed at lower levels in control motor neurons than in ALS motor neurons, which are decreased in number by 42% in motor cortex. APE/Ref-1 is increased in the nucleus of remaining upper motor neurons in ALS, which show a 38% loss of nuclear area. APE-Ref-1 is also upregulated in astrocytes in spinal cord white matter pathways in familial ALS. We conclude that mechanisms for DNA repair are activated in ALS, supporting the possibility that DNA damage is an upstream mechanism for motor neuron degeneration in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.