The chilled casting method is widely used in the metal casting industry to accelerate the mold's cooling rate. This method is very suitable for surface hardening by depositing the elements contained in the chill material onto the surface of the object being cast. One of the factors that influence surface hardness characteristics is the diffusion temperature. This study aims to determine the microhardness, surface layer thickness, and the element contained on the surface. The main material produced into Y-Block is ductile cast iron, the chill material is SS 304 plate with a thickness of 0.2mm. However, before the liquid material is poured into a mold, the chill plate is inserted into the surface of the pattern in the mold, then the plate was preheated. The result showed that the highest preheating temperature has produced microstructure around the surface area namely eutectic carbide of (FeCr)7C3, and (FeCr)3C. SEM-EDX analysis shows that 7.13%Cr is contained on the coating layer at a thickness of 0.020 mm and an average hardness of 700-900 HV.
Design of gating system is an important factor in obtaining defect-free casting. One of the casting defects is a porosity caused by internal shrinkage in solidification process. Prediction of the internal shrinkage porosity in the femoral stem of commercially pure titanium (CP-Ti) is investigated based on the gating system design. The objective of this research is to get the best gating system between three gating system designs. Three gating system designs of the femoral stem were simulated in an investment casting method. The internal shrinkage porosity occurs on the largest part and near the ingate of the femoral stem. The gating system design that has ingates cross section area: 78.5; 157; and 128.5 mm 2 has the least of the internal shrinkage porosity. This design has the most uniform solidification in the entire of the femoral stem. An experiment is conducted to validate the simulation data. The results of internal shrinkage porosity in the three gating system designs in the simulation were compared with the experiment. Based on the comparison, the trend of internal shrinkage porosity at the three gating system designs in the simulation agrees with the experiment. The results of this study will aid in the elimination of casting defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.