Bullying is described as an undesirable behavior by others that harms an individual physically, mentally, or socially. Cyberbullying is a virtual form (e.g., textual or image) of bullying or harassment, also known as online bullying. Cyberbullying detection is a pressing need in today’s world, as the prevalence of cyberbullying is continually growing, resulting in mental health issues. Conventional machine learning models were previously used to identify cyberbullying. However, current research demonstrates that deep learning surpasses traditional machine learning algorithms in identifying cyberbullying for several reasons, including handling extensive data, efficiently classifying text and images, extracting features automatically through hidden layers, and many others. This paper reviews the existing surveys and identifies the gaps in those studies. We also present a deep-learning-based defense ecosystem for cyberbullying detection, including data representation techniques and different deep-learning-based models and frameworks. We have critically analyzed the existing DL-based cyberbullying detection techniques and identified their significant contributions and the future research directions they have presented. We have also summarized the datasets being used, including the DL architecture being used and the tasks that are accomplished for each dataset. Finally, several challenges faced by the existing researchers and the open issues to be addressed in the future have been presented.
Sustainable development is a framework for achieving human development goals. It provides natural systems' ability to deliver natural resources and ecosystem services. Sustainable development is crucial for the economy and society. Artificial intelligence (AI) has attracted increasing attention in recent years, with the potential to influence many domains positively. AI is a commonly employed component in the quest for long-term sustainability. In this study, we explore the impact of AI on three pillars of sustainable development: society, environment, and economy, as well as numerous case studies from which we may deduce the impact of AI in a variety of areas, i.e., agriculture, classifying waste, smart water management, and Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, we present AI-based strategies for achieving Sustainable Development Goals (SDGs), which are effective for developing countries like Bangladesh. The framework that we propose may reduce the negative impact of AI and promote the proactiveness of this technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.