Despite their anti-inflammatory properties, role in barrier function, absorption and microbial balance in the gut, knowledge on maturational and dietary effects on intestinal short-chain fatty acids (SCFA) in neonatal piglets is scarce. Moreover, little information exists whether SCFA and lactic acid (LA) modulates gut motility at this age. The present study aimed 1) to investigate the maturational changes in the SCFA profile with and without creep feeding of piglets in the first 3 weeks of life; and 2) to examine the effects of SCFA and LA on muscle contractibility in jejunal tissue from neonatal piglets ex vivo. SCFA concentrations were measured in fecal samples of 52 piglets from 10 litters collected on days 2, 6, 13, and 20 of life using gas chromatography. Half of the litters were fed a commercial creep feed from day 10 of life. The organ bath system was used to test the effect of SCFA (acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate) as well as of LA and the combination of LA and SCFA on muscle contractibility in piglet’s jejunum. Average daily gain of piglets was similar between groups before and after introduction of creep feed. SCFA were detectable in feces in relevant concentrations from day 2 of life and increased on day 6 in males by 3.0-fold and on day 13 in females by 1.6-fold but decreased again on day 20 in both sexes compared to day 2 (P < 0.05). Creep feeding reduced fecal SCFA by 0.6-fold on day 13 without largely modifying molar proportions, whereas it increased fecal SCFA by 0.8-fold on day 20 of life compared to the sow-reared only piglets (P < 0.05). Applying SCFA ex vivo increased the muscle contraction of the jejunum by 30% (P < 0.05). Likewise, addition of LA and the combination of LA and SCFA increased the jejunal muscle contractibility by 34.9 and 32.2%, respectively, compared to the muscle tension pre-addition (P < 0.05). In conclusion, the present results for fecal SCFA in first days of life suggest high bacterial activity on milk components and emphasize the importance of SCFA for intestinal development and function. After a lag phase, creep feeding promotes fermentation in the distal colon, which may be beneficial for the gut homeostasis. Results further demonstrate the stimulating effect of SCFA and LA for jejunal motility, suggesting a role for mixing of digesta (segmentation) and digestion and absorption of nutrients as well as passage in the jejunum of neonatal piglets.
Dietary and microbially derived fatty acids (FA) play important roles in gut mucosal inflammatory signaling, barrier function and oxidative stress response. Nevertheless, little information is available about gastrointestinal FA profiles and receptor distribution in pigs, especially for long-chain FA (LCFA). Therefore, the present pilot study aimed to 1) investigate the gastrointestinal FA profiles; 2) link the luminal FA profiles to the mucosal expression of genes related to FA sensing and signaling; and 3) assess potential dietary effects on gut and systemic lipid metabolism in pigs. Gut, liver and serum samples were obtained from barrows (13.1 ± 2.3 kg) fed diets containing either phytase (500 phytase units/kg diet) or cereals treated with 2.5% lactic acid (LA) (n = 8/diet) for 18 days. Results showed gut regional and diet-related differences in luminal FA profiles and mucosal receptor expression, whereas diet little affected hepatic expression levels and serum lipids. Short-chain fatty acids (SCFA) increased from stomach, jejunum and ileum to the cecum (P < 0.05), whereas LCFA were higher in stomach, cecum and colon than in jejunum and ileum (P < 0.05). LA-treated cereals enhanced cecal acetate and butyrate, whereas phytase and LA treated cereals decreased the LCFA by 35.9 and 14.4%, respectively (P < 0.05). Gut regional differences suggested stronger signaling via FFAR1 expression in the ileum, and via FFAR2, FFAR4 and HCAR1 expression in cecum and colon (P < 0.05). Expression of AMPK, FASN, PPARG, SREBP1 and SREBP2 was higher in the cecum and colon compared to the small intestine (P < 0.05), with stronger sensing via FASN and SREBP2. Phytase decreased expression of FFAR2 and FFAR4, whereas it increased that of FFAR3 and MCT1 in the cecum (P < 0.05). LA-treated cereals raised cecal expression of FFAR3 and HCAR1 (P < 0.05). Pearson’s correlations (|r| > 0.35; P < 0.05) supported that FA receptor- and nuclear transcription factor-dependent pathways were involved in the mucosal regulation of gut incretin expression but differed across gut regions. In conclusion, results support regional differences in SCFA, lactate and LCFA sensing and absorption capacities in the small and large intestines of pigs. Effects of phytase and the LA-treated cereals on intestinal FA levels and signaling can be explained by differences in nutrient flows (e.g. phosphorus and carbohydrate fractions). This overview provides a solid basis for future intestinal FA sensing in pigs.
Salivary secretions are essential for the regulation of digestive processes, as well as rumen and cow health. This research evaluated the effects of the duration of high-grain feeding, and of the time relative to a meal, on salivation, saliva properties, feed bolus characteristics, chewing activity, ruminal and reticular volatile fatty acids, as well as salivary and ruminal pH. Nine nonlactating cannulated Holstein cows were sampled at 1 and 23 d after transition to a 65% grain diet (short term and long term, respectively). Both before and after a controlled meal (2.5 kg of dry matter, offered over 4 h), unstimulated saliva was taken orally for composition analysis. Stimulated salivation and feed boli characteristics were evaluated by collection of ingesta from cardia during 30 min. Chewing and ruminal pH were measured during the controlled meal and for a total of 6 h thereafter. Results from unstimulated saliva showed no effect of the duration of high-grain feeding on bicarbonate, phosphate, total proteins, mucins, lysozyme, and buffer capacity, but increased osmolality at the long term. Lysozyme activity did not differ with high-grain feeding duration, but tended to be lower after the meal. In contrast to short-term-fed cows, the longterm-fed cows increased both meal consumption and feed bolus size, but decreased chewing and feed ensalivation (5.2 vs. 4.6 ± 0.50 g of saliva/g of dry matter), and had lower pH of the stimulated saliva (7.00 vs. 6.67 ± 0.076). These cows also had decreased chewing index (66.5 vs. 45.4 min/kg of neutral detergent fiber), and despite the increase in stimulated saliva buffer capacity (0.027 vs. 0.039 ± 0.006), mean ruminal pH decreased (6.31 vs. 6.11 ± 0.065) during ad libitum feeding. Both in the rumen and reticulum, the concentration of total volatile fatty acids was lower and propionate proportion was higher at the long term. Linear regression analyses revealed a positive influence of the flow rates of salivary bicarbonate and phosphate on ruminal pH during the short term. For every 1-mol increment in the flow of bicarbonate or phosphate, ruminal pH increased by 0.062 or 0.439 units, respectively. Overall, salivary buffers are key determinants of ruminal pH regulation, especially during short-term grain feeding. However, in the long term, ruminal pH drop during ad libitum feeding was stronger, and this effect seems to be exacerbated by increased feed bolus size, accompanied by reductions in feed ensalivation, stimulated saliva pH, and chewing index.
Saliva facilitates feed ingestion, nutrient circulation, and represents an important pH buffer for ruminants, especially for cattle fed high-concentrate diets that promote rumen acidification. This experiment evaluated the short-term effects of nine phytogenic compounds on salivation, saliva physico-chemical composition as well as ingested feed boli characteristics in cattle. A total of nine ruminally cannulated Holstein cows were used. Each compound was tested in four of these cows as part of a high-concentrate meal (2.5 kg of total mixed ration in dry matter basis for 4 h) in low or high dose, and was compared to a control meal without compound. Saliva was sampled orally (unstimulated saliva) for physico-chemical composition analysis. Composition of the ingested saliva (stimulated saliva), salivation and feed boli characteristics were assessed from ingesta collected at the cardia during the first 30 min of the meal. Analysis of unstimulated saliva showed that supplementation with capsaicin and thyme oil increased buffer capacity, while supplementation with thymol, L-menthol and gentian root decreased saliva pH. In addition, supplementing angelica root decreased saliva osmolality. Regression analysis on unstimulated saliva showed negative associations between mucins and bicarbonate as well as with phosphate when garlic oil, thyme oil or angelica root was supplemented. Analysis of stimulated saliva demonstrated that supplementation with garlic oil increased phosphate concentration, thyme oil tended to increase osmolality, capsaicin and thymol increased buffer capacity, and ginger increased phosphate content. Furthermore, salivation rate increased with ginger and thymol, and tended to increase with garlic oil, capsaicin, L-menthol and mint oil. Feed ensalivation increased with capsaicin. A positive association was found between feed bolus size and salivation rate when any of the phytogenic compounds was supplemented. Overall, our results demonstrate positive short-term effects of several phytogenic compounds on unstimulated and stimulated saliva physico-chemical properties, salivation or feed boli characteristics. Thus, the phytogenic compounds enhancing salivary physico-chemical composition have the potential to contribute to maintain or improve ruminal health in cattle fed concentrate-rich rations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.