BackgroundBecause latent Epstein Barr (EBV)-infection is a specific characteristic of malignant nasopharyngeal carcinoma (NPC), various molecules of viral origin are obvious candidate biomarkers in this disease. In a previous study, we could show in a few clinical samples that it was possible to detect a category of EBV microRNAs called miR-BARTs in the plasma of at least a fraction of NPC patients. The first aim of the present study was to investigate the status of circulating miR-BART17-5p (one of the miR-BARTs hereafter called miR-BART17) and EBV DNA in a larger series of NPC plasma samples. The second aim was to determine whether or not circulating miR-BART17 was carried by plasma exosomes.Patients and methodsPlasma samples were collected from 26 NPC patients and 10 control donors, including 9 patients with non-NPC Head and Neck squamous cell carcinoma and one healthy EBV carrier. Concentrations of miR-BART17 and two cellular microRNAs (hsa-miR-16 and -146a) were assessed by real-time quantitative PCR with spike-in normalization and absolute quantification. In addition, for 2 patients, exosome distributions of miR-BART17 and miR-16 were investigated following plasma lipoprotein fractionation by isopycnic density gradient ultrcentrifugation.ResultsThe miR-BART17 was significantly more abundant in plasma samples from NPC patients compared to non-NPC donors. Above a threshold of 506 copies/mL, detection of miR-BART17 was highly specific for NPC patients (ROC curve analysis: AUC=0.87 with true positive rate = 0.77, false positive rate = 0.10). In this relatively small series, the concentration of plasma miR-BART17 and the plasma EBV DNA load were not correlated. When plasma samples were fractionated, miR-BART17 co-purified with a protein-rich fraction but not with exosomes.ConclusionsDetection of high concentrations of plasma miR-BART17 is consistent in NPC patients. This parameter is, at least in part, independent of the viral DNA load. Circulating miR-BART17 does not co-purify with exosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.