Recent work in computer vision and cognitive reasoning has given rise to an increasing adoption of the Violationof-Expectation (VoE) paradigm in synthetic datasets. Inspired by infant psychology, researchers are now evaluating a model's ability to label scenes as either expected or surprising with knowledge of only expected scenes. However, existing VoE-based 3D datasets in physical reasoning provide mainly vision data with little to no heuristics or inductive biases. Cognitive models of physical reasoning reveal infants create high-level abstract representations of objects and interactions. Capitalizing on this knowledge, we established a benchmark to study physical reasoning by curating a novel large-scale synthetic 3D VoE dataset armed with ground-truth heuristic labels of causally relevant features and rules. To validate our dataset in five event categories of physical reasoning, we benchmarked and analyzed human performance. We also proposed the Object File Physical Reasoning Network (OFPR-Net) which exploits the dataset's novel heuristics to outperform our baseline and ablation models. The OFPR-Net is also flexible in learning an alternate physical reality, showcasing its ability to learn universal causal relationships in physical reasoning to create systems with better interpretability.
Recent work in cognitive reasoning and computer vision has engendered an increasing popularity for the Violation-of-Expectation (VoE) paradigm in synthetic datasets. Inspired by work in infant psychology, researchers have started evaluating a model's ability to discriminate between expected and surprising scenes as a sign of its reasoning ability. Existing VoE-based 3D datasets in physical reasoning only provide vision data. However, current cognitive models of physical reasoning by psychologists reveal infants create high-level abstract representations of objects and interactions. Capitalizing on this knowledge, we propose AVoE: a synthetic 3D VoE-based dataset that presents stimuli from multiple novel sub-categories for five event categories of physical reasoning. Compared to existing work, AVoE is armed with ground-truth labels of abstract features and rules augmented to vision data, paving the way for high-level symbolic predictions in physical reasoning tasks.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.