TRPV1 is a thermo-sensitive ion channel involved in neurosensory and other physiological functions. The trans-membrane helices of TRPV1 undergo quick and complex conformational changes governed by thermodynamic parameters and membrane components leading to channel opening. However, the molecular mechanisms underlying such events are poorly understood. Here we analysed the molecular evolution of TRPV1 at the lipid-water-interface region (LWI), typically defined as a layer of 6 Å thickness on each side of the membrane with less availability of free water. Amino acids demarcating the end of the trans-membrane helices are highly conserved. Residues present in the inner leaflet are more conserved and have been preferentially selected over others. Amino acids with snorkeling properties (Arginine and Tyrosine) undergo specific selection during the vertebrate evolution in a cholesterol-dependent and/or body temperature manner. Results suggest that H-bond formation between the OH- group of cholesterol and side chain of Arg557 or Arg575 at the inner leaflet is a critical parameter that can regulate channel functions. Different LWI mutants of TRPV1 have altered membrane localization and deficient colocalization with lipid raft markers. These findings may help to understand the lipid-protein interactions, and molecular basis of different neuronal functions. Such findings may have broad importance in the context of differential sensory responses, pathophysiologies, and application of pharmacological drugs such as anaesthetics acting on TRPVs.
A major limitation in the bio-medical sector is the availability of materials suitable for bone tissue engineering using stem cells and methodology converting the stochastic biological events towards definitive as well as efficient bio-mineralization. We show that osteoblasts and Bone Marrow-derived Mesenchymal Stem Cell Pools (BM-MSCP) express TRPM8, a Ca2+-ion channel critical for bone-mineralization. TRPM8 inhibition triggers up-regulation of key osteogenesis factors; and increases mineralization by osteoblasts. We utilized CMT:HEMA, a carbohydrate polymer-based hydrogel that has nanofiber-like structure suitable for optimum delivery of TRPM8-specific activators or inhibitors. This hydrogel is ideal for proper adhesion, growth, and differentiation of osteoblast cell lines, primary osteoblasts, and BM-MSCP. CMT:HEMA coated with AMTB (TRPM8 inhibitor) induces differentiation of BM-MSCP into osteoblasts and subsequent mineralization in a dose-dependent manner. Prolonged and optimum inhibition of TRPM8 by AMTB released from the gels results in upregulation of osteogenic markers. We propose that AMTB-coated CMT:HEMA can be used as a tunable surface for bone tissue engineering. These findings may have broad implications in different bio-medical sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.