The isolation and analysis of circulating tumor cells (CTC) has the potential to provide minimally invasive diagnostic, prognostic and predictive information. Widespread clinical implementation of CTC analysis has been hampered by a lack of comparative investigation between different analytic methodologies in clinically relevant settings. The objective of this study was to evaluate four different CTC isolation techniques–those that rely on surface antigen expression (EpCAM or CD45 using DynaBeads ® or EasySep™ systems) or the biophysical properties (RosetteSep™ or ScreenCell ® ) of CTCs. These were evaluated using cultured cells in order to calculate isolation efficiency at various levels including; inter-assay and inter-operator variability, protocol complexity and turn-around time. All four techniques were adequate at levels above 100 cells/mL which is commonly used for the evaluation of new isolation techniques. Only the RosetteSep™ and ScreenCell ® techniques were found to provide adequate sensitivity at a level of 10 cells/mL. These techniques were then applied to the isolation and analysis of circulating tumor cells blood drawn from metastatic breast cancer patients where CTCs were detected in 54% (15/28) of MBC patients using the RosetteSep™ and 75% (6/8) with ScreenCell ® . Overall, the ScreenCell ® method had better sensitivity.
ObjectiveMonoclonal antibodies (MAbs) such as trastuzumab and bevacizumab have become important yet expensive components of systemic cancer therapy across a variety of disease sites. We assessed the potential cost implications of adopting trastuzumab and bevacizumab therapy in the context of their potential utilization in breast, lung, and colorectal cancers. DesignWe first estimated MAb costs per patient and treatment indication and then included the MAb acquisition cost and the costs of medical resource utilizations required for therapy delivery. Drug costs were based on 2005 average Canadian wholesale prices, assuming full drug delivery and uncomplicated cycles. A direct-payer perspective was undertaken, and results are reported in Canadian dollars. Potential lifetime costs were then derived according to constructed schema, which account for absolute numbers of target patients and systemic therapy utilization. We subsequently estimated costs of MAb therapy relative to total costs of conventional management without MAb therapy. ResultsTrastuzumab costs $49,915 and $28,350 per patient treated in the adjuvant and metastatic breast cancer settings, respectively; bevacizumab costs $48,490 and $39,614 per patient treated in the metastatic lung and colorectal cancer settings, respectively. Potential lifetime absolute costs to Canada's health care system were approximately $127 million and $299 million for trastuzumab and bevacizumab respectively, corresponding to an average increase in health care expenditure of approximately 19% for breast cancer and 21% for lung and colorectal cancer over conventional management without MAbs. ConclusionsNovel Mab-based therapies such as trastuzumab and bevacizumab will likely add a significant cost burden to Canada's publicly funded health care system.
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/-FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.