The investigation of the interaction of cyclic trinuclear silver(I) pyrazolate [AgPz]3 (Pz = 3,5-bis(trifluoromethyl)pyrazolate) with pyridine-based chalcones (anthracen-9-yl and phenyl-substituted ones) has been performed by IR-, UV-vis, and NMR spectroscopies in the solution. The carbonyl group participates in coordination with metal ions in all complexes. However, the network of π-π/M-π non-covalent intermolecular interactions mainly influences complex formation. The spectral data suggest retaining the structures for all studied complexes in the solution and solid state. E-Z isomerization in the case of anthracene-containing compounds significantly influences the complexation. E-isomer of chalcones seeks the planar structure in the complexes with [AgPz]3. In contrast, the Z-isomer of chalcone demonstrates the chelating coordination of O- and N atoms to silver ions. The complexation of anthracene-containing chalcones allows the switching of the emission nature from charge transfer to ligand-centered at 77 K. In contrast, phenyl-substituted chalcone in complex with macrocycle demonstrates that the emission significantly shifted (Δ = ca. 155 nm) to the low-energy region compared to the free base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.