Tailoring personalized cancer nanomedicines demands detailed understanding of the tumor microenvironment. In recent years, smart upconversion nanoparticles with the ability to exploit the unique characteristics of the tumor microenvironment for precise targeting have been designed. To activate upconversion nanoparticles, various bio‐physicochemical characteristics of the tumor microenvironment, namely, acidic pH, redox reactants, and hypoxia, are exploited. Stimuli‐responsive upconversion nanoparticles also utilize the excessive presence of adenosine triphosphate (ATP), riboflavin, and Zn2+ in tumors. An overview of the design of stimulus‐responsive upconversion nanoparticles that precisely target and respond to tumors via targeting the tumor microenvironment and intracellular signals is provided. Detailed understanding of the tumor microenvironment and the personalized design of upconversion nanoparticles will result in more effective clinical translation.
Highly fluorescent nitrogen and phosphorus-doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di-ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as-obtained carbon dots are well monodispersed with particle sizes 1.5-4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe(3+) ions as well as cancer cell imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.