In an effort to synthesize cobalt-rich metallaheteroboranes
from
decaborane(14) analogues, we have studied the reaction of 10-vertex nido-[(Cp*Co)2B6H6E2] (Cp* = η5-C5Me5, 1: E = Se and 2: E = Te) with [Co2(CO)8] under thermolytic conditions. All of these reactions
yielded face-fused clusters, [(Cp*Co)2B6H6E2{Co(CO)}(μ-CO){Co3(CO)6}] (3: E = Se and 4: E = Te). Further,
when clusters 3 and 4 were treated with
[Co2(CO)8], they underwent further cluster buildup
reactions leading to the formation of 16-vertex doubly face-fused
clusters [(Cp*Co)2B6H6E2{Co2(CO)2}(μ-CO)2{Co4(CO)8}] (5: E = Se and 6: E
= Te). Cobaltaheteroboranes 3 and 4 comprise
one icosahedron {Co4B6E2} and one
square pyramidal {Co3B2} moiety, whereas 5 and 6 are made with one icosahedron {Co4B6E2} and two square pyramidal {Co3B2} cores. In an attempt to generate heterometallic
metal-rich clusters, we have explored the reactivity of decaborane(14)
analogue nido-[(Cp*Co)2B7TeH9] (7) with [Ru3(CO)12]
at 80 °C, which afforded face-fused 13-vertex cluster [(Cp*Co)2B7H7Te{Ru3(CO)8}] (8). Cluster 8 is a rare example of
a metal-rich metallaheteroborane in which one icosahedron {Co2Ru2B7Te} and a tetrahedron {Ru2B2} units are fused through a common {RuB2}
triangular face. Further, the treatment of nido-[(Cp*Co)2B6S2H4(CH2S2)] (9) with [Fe2(CO)9]
afforded 11-vertex nido-[(Cp*Co)2B6S2H4(CH2S2){Fe(CO)3}] (10). The core structure of 10 is similar to that of [C2B9H11]2– with a five-membered pentahapto coordinating face.
All of the synthesized metal-rich metallaheteroboranes have been characterized
by multinuclear nuclear magnetic resonance (NMR) spectroscopy, IR
spectroscopy, ESI-MS, and structurally solved by single-crystal X-ray
diffraction analysis. Furthermore, theoretical investigations gave
insight into the bonding of such higher-nuclearity clusters containing
heavier chalcogen atoms.
In an effort to synthesize metallaheteroborane clusters of higher nuclearity, the reactivity of metallaheteroboranes, nido-[(Cp*M)2B6S2H4(CS3)] (Cp* = C5Me5) (1: M = Co; 2: M = Rh) with various metal carbonyls have been investigated. Photolysis of nido-1 and nido-2 with group 6 metal carbonyls, M’(CO)5.THF (M’ = Mo or W) were performed that led to the formation of a series of adducts [(Cp*M)2B6S2H4(CS3){M’(CO)5}] (3: M = Co, M’ = Mo; 4: M = Co, M’ = W; 5: M = Rh, M’ = Mo; 6: M = Rh, M’ = W) instead of cluster expansion reactions. In these adducts, the S atom of C=S group of di(thioboralane)thione {B2CS3} moiety is coordinated to M’(CO)5 (M = Mo or W) in η1-fashion. On the other hand, thermolysis of nido-1 with Ru3(CO)12 yielded one fused metallaheteroborane cluster [{Ru(CO)3}3S{Ru(CO)}{Ru(CO)2}Co2B6SH4(CH2S2){Ru(CO)3}2S], 7. This 20-vertex-fused cluster is composed of two tetrahedral {Ru3S} and {Ru2B2}, a flat butterfly {Ru3S} and one octadecahedron {Co2RuB7S} core with one missing vertex, coordinated to {Ru2SCH2S2} through two boron and one ruthenium atom. On the other hand, the room temperature reaction of nido-2 with Co2(CO)8 produced one 19-vertex fused metallaheteroborane cluster [(Cp*Rh)2B6H4S4{Co(CO)}2{Co(CO)2}2(μ-CO)S{Co(CO)3}2], 8. Cluster 8 contains one nido-decaborane {Rh2B6S2}, one butterfly {Co2S2} and one bicapped square pyramidal {Co6S} unit that exhibits an intercluster fusion with two sulfur atoms in common. Clusters 3–6 have been characterized by multinuclear NMR and IR spectroscopy, mass spectrometry and structurally determined by XRD analyses. Furthermore, the DFT calculations have been carried out to gain insight into electronic, structural and bonding patterns of the synthesized clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.