This review highlights the inflammatory and insulin-antagonizing effects of saturated fatty acids (SFA), which contribute to the development of metabolic syndrome. Mechanisms responsible for these unhealthy effects of SFA include: 1) accumulation of diacylglycerol and ceramide; 2) activation of nuclear factor-kappaB, protein kinase C-, and mitogen-activated protein kinases, and subsequent induction of inflammatory genes in white adipose tissue, immune cells, and myotubes; 3) decreased PPARgamma coactivator-1 alpha/beta activation and adiponectin production, which decreases the oxidation of glucose and fatty acids (FA); and 4) recruitment of immune cells like macrophages, neutrophils, and bone marrow-derived dendritic cells to WAT and muscle. Several studies have demonstrated potential health benefits of substituting SFA with unsaturated FA, particularly oleic acid and (n-3) FA. Thus, reducing consumption of foods rich in SFA and increasing consumption of whole grains, fruits, vegetables, lean meats and poultry, fish, low-fat dairy products, and oils containing oleic acid or (n-3) FA is likely to reduce the incidence of metabolic disease.
The metabolic syndrome (MetS) is characterized by obesity concomitant with other metabolic abnormalities such as hypertriglyceridemia, reduced high-density lipoprotein levels, elevated blood pressure and raised fasting glucose levels. The precise definition of MetS, the relationships of its metabolic features, and what initiates it, are debated. However, obesity is on the rise worldwide, and its association with these metabolic symptoms increases the risk for diabetes and cardiovascular disease (among many other diseases). Research needs to determine the mechanisms by which obesity and MetS increase the risk of disease. In light of this growing epidemic, it is imperative to develop animal models of MetS. These models will help determine the pathophysiological basis for MetS and how MetS increases the risk for other diseases. Among the various animal models available to study MetS, mice are the most commonly used for several reasons. First, there are several spontaneously occurring obese mouse strains that have been used for decades and that are very well characterized. Second, high-fat feeding studies require only months to induce MetS. Third, it is relatively easy to study the effects of single genes by developing transgenic or gene knockouts to determine the influence of a gene on MetS. For these reasons, this review will focus on the benefits and caveats of the most common mouse models of MetS. It is our hope that the reader will be able to use this review as a guide for the selection of mouse models for their own studies.
Conjugated linoleic acid (CLA), a family of fatty acids found in beef, dairy foods, and dietary supplements, reduces adiposity in several animal models of obesity and in some humans. However, the isomer-specific antiobesity mechanisms of action of CLA are unclear, and its use in humans is controversial. This review will summarize in vivo and in vitro findings from the literature regarding potential mechanisms by which CLA reduces adiposity including its impact on 1) energy metabolism, 2) adipogenesis, 3) inflammation, 4) lipid metabolism, and 5) apoptosis.
Recent data suggest that proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. However, characterization of the cell types involved in inflammation and how these cells promote insulin resistance in human adipocytes are unclear. We simulated acute inflammation using the endotoxin lipopolysaccharide (LPS) to define the roles of nonadipocytes in primary cultures of human adipocytes. LPS induction of the mRNA levels of proinflammatory cytokines (e.g. IL-6, TNF-alpha, and IL-1beta) and chemokines (e.g. IL-8, monocyte chemoattractant protein-1) occurred primarily in the nonadipocyte fraction of newly differentiated human adipocytes. Nonadipocytes were characterized as preadipocytes based on their abundant mRNA levels of preadipocyte markers preadipocyte factor-1 and adipocyte enhancer protein-1 and only trace levels of markers for macrophages and myocytes. The essential role of preadipocytes in inflammation was confirmed by modulating the degree of differentiation in the cultures from approximately 0-90%. LPS-induced proinflammatory cytokine/chemokine expression and nuclear factor-kappaB and MAPK signaling decreased as differentiation increased. LPS-induced cytokine/chemokine expression in preadipocytes was associated with: 1) decreased adipogenic gene expression, 2) decreased ligand-induced activation of a peroxisome proliferator activated receptor (PPAR)-gamma reporter construct and increased phosphorylation of PPARgamma, and 3) decreased insulin-stimulated glucose uptake. Collectively, these data demonstrate that LPS induces nuclear factor-kappaB- and MAPK-dependent proinflammatory cytokine/chemokine expression primarily in preadipocytes, which triggers the suppression of PPARgamma activity and insulin responsiveness in human adipocytes.
Increased deposition of specific extracellular matrix (ECM) components is a characteristic of insulin-resistant skeletal muscle. Hyaluronan (HA) is a major constituent of the ECM. The hypotheses that 1) HA content is increased in the ECM of insulin-resistant skeletal muscle and 2) reduction of HA in the muscle ECM by long-acting pegylated human recombinant PH20 hyaluronidase (PEGPH20) reverses high-fat (HF) diet–induced muscle insulin resistance were tested. We show that muscle HA was increased in HF diet–induced obese (DIO) mice and that treatment of PEGPH20, which dose-dependently reduced HA in muscle ECM, decreased fat mass, adipocyte size, and hepatic and muscle insulin resistance in DIO mice at 10 mg/kg. Reduced muscle insulin resistance was associated with increased insulin signaling, muscle vascularization, and percent cardiac output to muscle rather than insulin sensitization of muscle per se. Dose-response studies revealed that PEGPH20 dose-dependently increased insulin sensitivity in DIO mice with a minimally effective dose of 0.01 mg/kg. PEGPH20 at doses of 0.1 and 1 mg/kg reduced muscle HA to levels seen in chow-fed mice, decreased fat mass, and increased muscle glucose uptake. These findings suggest that ECM HA is a target for treatment of insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.