Optimizing ferroelectrics for contemporary high‐frequency applications asks for the fundamental understanding of ferroelectric switching and domain wall (DW) motion in ultrafast field pulses while the microscopic understanding of the latter is so far incomplete. To close this gap in knowledge, ab initio‐based molecular dynamics simulations are utilized to analyze the dynamics of 180° DWs in the prototypical ferroelectric material BaTiO3. How ultrafast field application initially excites the dipoles in the system and how they relax to their steady state via transient negative capacitance are discussed. Excitingly, a giant boost of the DW velocity related to the nonequilibrium switching of local dipoles acting as nucleation centers for the wall movement is found. This boost may allow to tune the local ferroelectric switching rate by the shape of an applied field pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.