Beer is the most consumed alcoholic beverage; with 177.5 million kiloliters produced every year, it is one of the most relevant food products. Diacetyl is a typical byproduct of yeast metabolism that is formed during the fermentation inside breweries. The perception of this high volatile and butter-like flavor molecule varies according to the kind of beer, from a positive and highly sought characteristic to a characteristic that is avoided. Furthermore, its toxicity when inhaled has been proven. Typical diacetyl analysis includes voltametric detection and chromatographic analysis techniques. Using metal oxide sensors (MOS), this analysis can become fast and cost-effective, evaluating the differences in diacetyl concentrations through resistance variation. The S3+ (Nano Sensor Systems s.r.l.; Reggio Emilia, Italy; device can recognize volatile compounds through a tailormade array of different materials. The results can be shown on a PCA that is directly generated by the instruments and can be used to manage the productive process through an IoT integrated system. Testing different beer typology through electrochemical sensors allows for the validation of this new approach for diacetyl evaluation. The results have shown an excellent ability to detect diacetyl in different beer samples, perfectly discriminating among different concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.