The coupling reactions of polyethylene glycol (PEG) with two different nano-carbonaceous materials, graphene oxide (GO) and expanded graphene oxide (EGO), were achieved by amide bond formations. These reactions yielded PEGylated graphene oxides, GO-PEG and EGO-PEG. Whilst presence of the newly formed amide links (NH-CO) were confirmed by FTIR stretches observed at 1732 cm−1 and 1712 cm−1, the associated Raman D- and G-bands resonated at 1311/1318 cm−1 and 1584/1595 cm−1 had shown the carbonaceous structures in both PEGylated products remain unchanged. Whilst SEM images revealed the nano-sheet structures in all the GO derivatives (GO/EGO and GO-PEG/EGO-PEG), TEM images clearly showed the nano-structures of both GO-PEG and EGO-PEG had undergone significant morphological changes from their starting materials after the PEGylated processes. The successful PEGylations were also indicated by the change of pH values measured in the starting GO/EGO (pH 2.6–3.3) and the PEGylated GO-PEG/EGO-PEG (pH 6.6–6.9) products. Initial antifungal activities of selective metallic nanomaterials (ZnO and Cu) and the four GO derivatives were screened against Candida albicans using the in vitro cut-well method. Whilst the haemocytometer count indicated GO-PEG and copper nanoparticles (CuNPs) exhibited the best antifungal effects, the corresponding SEM images showed C. albicans had, respectively, undergone extensive shrinkage and porosity deformations. Synergistic antifungal effects all GO derivatives in various ratio of CuNPs combinations were determined by assessing C. albicans viabilities using broth dilution assays. The best synergistic effects were observed when a 30:70 ratio of GO/GO-PEG combined with CuNPs, where MIC50 185–225 μm/mL were recorded. Moreover, the decreased antifungal activities observed in EGO and EGO-PEG may be explained by their poor colloidal stability with increasing nanoparticle concentrations.
A series of carbon nanotubes doped with Fe and/or Cu, Fe100−xCux/CNT (x = 0, 25, 50, 75 and 100) has been prepared by an easy method of wetness impregnation of commercial multiwalled carbon nanotubes previously oxidized with nitric acid. The wide characterization of the solids by different techniques demonstrates that the incorporation of Fe and Cu to the CNTs has been successfully produced. Fe100−xCux/CNT samples were tested as catalysts in the removal of paracetamol from aqueous solution by a combined process of adsorption and Fenton-like oxidation. Under mild conditions, 25 °C and natural pH of solution, i.e., nearly neutral, values of oxidation of paracetamol between 90.2% and 98.3% were achieved after 5 h of reaction in most of cases. Furthermore, with the samples containing higher amounts of copper, i.e., Cu100/CNT and Fe25Cu75/CNT, only 2 h were necessary to produce depletion values of 73.2% and 87.8%, respectively. The influence of pH and dosage of H2O2 on the performance has also been studied. A synergic effect between both Cu+/Cu2+ and Fe2+/Fe3+ in Fenton-like reaction was observed. These results demonstrate that Fe100−xCux/CNT are powerful Fenton-like catalyst for degradation of paracetamol from aqueous solution and they could be extended to the removal of other organic pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.