Dothistroma needle blight (DNB) is one of the most devastating needle diseases on Pinus spp. worldwide. Ever since the description of the causal agent of the disease in Europe in 1911 as Cytosporina septospora, and independently in the USA in 1941 as Dothistroma pini, there has been considerable taxonomic discordance regarding the name of the pathogen used in literature. This was compounded both by the proposal of different varieties of the pathogen based on differences in spore size and the application of dual nomenclature where three names, Scirrhia pini, Eruptio pini andMycosphaerella pini, were used to describe the sexual morph of the fungus. More recent studies using sequence-based methods revealed that DNB can be caused by either one of two distinct species, that is D. septosporum and D. pini. These important species have not been adequately typified, and this perpetuates lack of stability for their names. In this study, these names are fixed to reference sequences linked to living cultures representing type specimens. To achieve this goal, we designate an epitype for D. pini and a neotype for D. septosporum. The known polymorphism in the ITS region, the barcoding gene for these fungi, is characterized and a complete taxonomic history is provided for the genus Dothistroma.
Summary Lecanosticta acicola causes brown spot needle blight (BSNB) of Pinus species. The pathogen occurs mostly in the Northern Hemisphere but has also been reported in Central America and Colombia. BSNB can lead to stunted growth and tree mortality, and has resulted in severe damage to pine plantations in the past. There have been increasingly frequent new reports of this pathogen in Europe and in North America during the course of the past 10 years. This is despite the fact that quarantine practices and eradication protocols are in place to prevent its spread. Taxonomy Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycetes; Subclass Dothideomycetidae; Order Capniodales; Family Mycosphaerellaceae; Genus Lecanosticta. Host range and distribution Lecanosticta spp. occur on various Pinus species and are found in North America, Central America, South America (Colombia), Europe as well as Asia. Disease symptoms Small yellow irregular spots appear on the infected pine needles that become brown over time. They can be surrounded by a yellow halo. These characteristic brown spots develop to form narrow brown bands that result in needle death from the tips down to the point of infection. Needles are prematurely shed, leaving bare branches with tufts of new needles at the branch tips. Infection is usually most severe in the lower parts of the trees and progresses upwards into the canopies. Useful websites The EPPO global database providing information on L. acicola (https://gd.eppo.int/taxon/SCIRAC) Reference genome of L. acicola available on GenBank (https://www.ncbi.nlm.nih.gov/genome/?term=Lecanosticta+acicola) JGI Gold Genome database information sheet of L. acicola sequenced genome (https://gold.jgi.doe.gov/organism?xml:id=Go0047147)
Lecanosticta acicola causes the disease known as brown spot needle blight (BSNB), on Pinus species. The pathogen is thought to have a Central American centre of origin. This was based on the morphological variation between isolates believed to represent L. acicola from native Pinus spp. Two species of Lecanosticta, L. brevispora and L. guatemalensis, have recently been described from Mexico and Guatemala respectively based on morphology and sequence-derived phylogenetic inference. However, the putative native pathogen, L. acicola, was not found in those areas. In this study, the species diversity of a large collection of Lecanosticta isolates from Central America was considered. Phylogenetic analyses of the BT1, ITS, MS204, RPB2 and TEF1 gene regions revealed six species of Lecanosticta, four of which represented undescribed taxa. These are described here as Lecanosticta jani sp. nov. from Guatemala and Nicaragua, L. pharomachri sp. nov. from Guatemala and Honduras, L. tecunumanii sp. nov. from Guatemala and L. variabilis sp. nov. from Guatemala, Honduras, and Mexico. New host and country records were also found for the previously described L. brevispora and L. guatemalensis. Lecanosticta acicola was not found in any of the samples from Central America, and we hypothesize that it could be a northern hemisphere taxon. The high species diversity of Lecanosticta found in Mesoamerica suggests that this is a centre of diversity for the genus.
Summary Dothistroma needle blight is one of the most devastating pine tree diseases worldwide. New and emerging epidemics have been frequent over the last 25 years, particularly in the Northern Hemisphere, where they are in part associated with changing weather patterns. One of the main Dothistroma needle blight pathogens, Dothistroma septosporum, has a global distribution but most molecular plant pathology research has been confined to Southern Hemisphere populations that have limited genetic diversity. Extensive genomic and transcriptomic data are available for a D. septosporum reference strain from New Zealand, where an introduced clonal population of the pathogen predominates. Due to the global importance of this pathogen, we determined whether the genome of this reference strain is representative of the species worldwide by sequencing the genomes of 18 strains sampled globally from different pine hosts. Genomic polymorphism shows substantial variation within the species, clustered into two distinct groups of strains with centres of diversity in Central and South America. A reciprocal chromosome translocation uniquely identifies the New Zealand strains. Globally, strains differ in their production of the virulence factor dothistromin, with extremely high production levels in strain ALP3 from Germany. Comparisons with the New Zealand reference revealed that several strains are aneuploids; for example, ALP3 has duplications of three chromosomes. Increased gene copy numbers therefore appear to contribute to increased production of dothistromin, emphasizing that studies of population structure are a necessary adjunct to functional analyses of genetic polymorphisms to identify the molecular basis of virulence in this important forest pathogen.
Needle blights are serious needle fungal diseases affecting pines both in natural and productive forests. Among needle blight agents, the ascomycetes Lecanosticta acicola, Dothistroma pini and D. septosporum are of particular concern. These pathogens need specific, fast and accurate diagnostics since they are regulated species in many countries and may require differential management measures. Due to the similarities in fungal morphology and the symptoms they elicit, these species are hard to distinguish using morphological characteristics. The symptoms can also be confused with those caused by insects or abiotic agents. DNA-based detection is therefore recommended. However, the specific PCR assays that have been produced to date for the differential diagnosis of these pathogens can be applied only in a well-furnished laboratory and the procedure takes a relatively long execution time. Surveillance and forest protection would benefit from a faster diagnostic method, such as a loop-mediated isothermal amplification (LAMP) assay, which requires less sophisticated equipment and can also be deployed directly on-site using portable devices. LAMP assays for the rapid and early detection of L. acicola, D. pini and D. septosporum were developed in this work. Species-specific LAMP primers and fluorescent assimilating probes were designed for each assay, targeting the beta tubulin (β-tub2) gene for the two Dothistroma species and the elongation factor (EF-1α) region for L. acicola. Each reaction detected its respective pathogen rapidly and with high specificity and sensitivity in DNA extracts from both pure fungal cultures and directly from infected pine needles. These qualities and the compatibility with inexpensive portable instrumentation position these LAMP assays as an effective method for routine phytosanitary control of plant material in real time, and they could profitably assist the management of L. acicola, D. pini and D. septosporum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.