We selected a novel biotin-binding peptide for sensing biotin, biotinylated proteins, and nucleotides. From a 15-mer library displayed on the RNA coliphage Qβ, a 15-amino acid long peptide (HGHGWQIPVWPWGQG) hereby referred to as a nanotag was identified to selectively bind biotin. The target selection was achieved through panning with elution by infection. The selected peptide was tested as a transducer for an immunogenic epitope of the foot-and-mouth disease virus (FMDV) on Qβ phage platform separated by a linker. The biotin-tag showed no significant influence on the affinity of the epitope to its cognate antibody (SD6). The nanotag-bound biotin selectively fused either to the C- or N-terminus of the epitope. The epitope would not bind or recognize SD6 while positioned at the N-terminus of the nanotag. Additionally, the biotin competed linearly with the SD6 antibody in a competitive ELISA. Competition assays using the selected recombinant phage itself as a probe or transducer enable the operationalization of this technology as a biosensor toolkit to sense and quantify SD6 analyte. Herein, the published Strep II nanotag (DVEWLDERVPLVET) was used as a control and has similar functionalities to our proposed novel biotin-tag thereby providing a new platform for developing devices for diagnostic purposes.
The aim of this study was to evaluate the ability of oyster shell powder soil amendment to enhance cocoa seedling growth and induce resistance against Phytophthora megakarya in nurseries. The results showed that heat-treated oyster shells powder at 1% (w/w) soil amendment significantly increased plant height, leaf number, leaf area, dry shoot and root weight more than chemical fungicide and control treatment after twelve weeks of growth. The results showed that heat-treated oyster shell powder raised soil pH significantly and reduced P. megakarya load of the soil suspension by 82%. Assessment of resistance stimulation by leaf inoculation showed the highest level of resistance recorded in plants treated either with heat-treated or non-treated oyster shell powder. Furthermore, total phenolic compounds contents, total soluble proteins contents, polyphenoloxidase, chitinase, peroxidase and β-1,3-glucanases activities increased in both healthy or infected leaves from cacao plants treated with oyster shell powder more than those treated with chemical fungicide. These findings demonstrated that heat-treated oyster shell powder could be used as biofertilizer and biofungicide to improve the quality of cocoa seedling production and protect the plant against P. megakarya.
In the present study we evaluated the efficacy of a bioformulation of
Streptomyces cameroonensis
for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 10
6
CFU/g after six months storage at 4°C. The formulation was tested for inhibition of spore germination in
Phytophthora megakarya
and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an
in planta
assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the
S. cameroonensis
powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.