We discuss the intertwined topics of Fulling non-uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein-Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would take to settle the open question of whether a satisfactory example exists. A popular gloss on the Unruh effect has it that an observer uniformly accelerated through the Minkowski vacuum experiences a thermal flux of Rindler quanta. Taking the Unruh effect, so glossed, to establish that the notion of particle must be relativized to a reference frame, some would use it to demote the particle concept from fundamental status. We explain why technical results do not support the popular gloss and why the attempted demotion of the particle concept is both unsuccessful and unnecessary. Fulling non-uniqueness and the Unruh effect merit attention despite these negative verdicts because they provide excellent vehicles for illustrating key concepts of quantum field theory and for probing foundational issues of considerable philosophical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.