Active site reactivity and specificity of RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) from Azotobacter vinelandii, have been investigated through ligand binding, site-directed mutagenesis, and X-ray crystallographic techniques, in a combined approach. In native RhdA the active site Cys230 is found persulfurated; fluorescence and sulfurtransferase activity measurements show that phosphate anions interact with Cys230 persulfide sulfur atom and modulate activity. Crystallographic analyses confirm that phosphate and hypophosphite anions react with native RhdA, removing the persulfide sulfur atom from the active site pocket. Considering that RhdA and the catalytic subunit of Cdc25 phosphatases share a common three-dimensional fold as well as active site Cys (catalytic) and Arg residues, two RhdA mutants carrying a single amino acid insertion at the active site loop were designed and their phosphatase activity tested. The crystallographic and functional results reported here show that specific sulfurtransferase or phosphatase activities are strictly related to precise tailoring of the catalytic loop structure in RhdA and Cdc25 phosphatase, respectively.
In Azotobacter vinelandii the rhdA gene codes for a protein (RhdA) of the rhodanese-homology superfamily. By combining proteomics, enzymic profiles and ultrastructural observations, the phenotype of an A. vinelandii rhdA mutant was analyzed. We found that the A. vinelandii rhdA mutant, and not the wild-type strain, accumulated polyhydroxybutyrate. RhdA deficiency enhanced the expression of enzymes of the polyhydroxybutyrate biosynthetic operon, and affected the activity of specific tricarboxylic acid cycle enzymes. The effect was dramatic on aconitase, in spite of comparable expression of aconitase polypeptides in both strains. By using a model system, we found that RhdA triggered protection from oxidants.
A protocol for a simple and reliable dot-blot immunoassay was developed and optimized to test work of art samples for the presence of specific proteinaceus material (i.e. ovalbumin-based). The analytical protocol has been extensively set up with respect, among the other, to protein extraction conditions, to densitometric analysis and to the colorimetric reaction conditions. Feasibility evaluation demonstrated that a commercial scanner and a free image analysis software can be used for the data acquisition and elaboration, thus facilitating the application of the proposed protocol to commonly equipped laboratories and to laboratories of museums and conservation centres. The introduction of method of standard additions in the analysis of fresh and artificially aged laboratory-prepared samples, containing egg white and various pigments, allowed us to evaluate the matrix effect and the effect of sample aging and to generate threshold density values useful for the detection of ovalbumin in samples from ancient works of art. The efficacy of the developed dot-blot immunoassay was proved testing microsamples from 13th-16th century mural paintings of Saint Francesco Church in Lodi (Italy). Despite the aging, the altered conditions of conservation, the complex matrix, and the micro-size of samples, the presence of ovalbumin was detected in all those mural painting samples where mass-spectrometry-based proteomic analysis unambiguously detected ovalbumin peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.