Lymphangioleiomyomatosis (LAM) is a progressive and often fatal interstitial lung disease characterized by a diffuse proliferation of abnormal smooth muscle cells in the lungs. LAM is of unusual interest biologically because it affects almost exclusively young women. LAM can occur as an isolated disorder (sporadic LAM) or in association with tuberous sclerosis complex. Renal angiomyolipomas, which are found in most tuberous sclerosis patients, also occur in 60% of sporadic LAM patients. We previously found TSC2 loss of heterozygosity in 7 of 13 (54%) of angiomyolipomas from sporadic LAM patients, suggesting that LAM and TSC could have a common genetic basis. In this study, we report the identification of somatic TSC2 mutations in five of seven angiomyolipomas from sporadic LAM patients. In all four patients from whom lung tissue was available, the same mutation found in the angiomyolipoma was present in the abnormal pulmonary smooth muscle cells. In no case was the mutation present in normal kidney, morphologically normal lung, or lymphoblastoid cells. Our data demonstrate that somatic mutations in the TSC2 gene occur in the angiomyolipomas and pulmonary LAM cells of women with sporadic LAM, strongly supporting a direct role of TSC2 in the pathogenesis of this disease.
Lymphangioleiomyomatosis (LAM) is an often fatal disease primarily affecting young women in which tuberin (TSC2)-null cells metastasize to the lungs. The mechanisms underlying the striking female predominance of LAM are unknown. We report here that 17--estradiol (E2) causes a 3-to 5-fold increase in pulmonary metastases in male and female mice, respectively, and a striking increase in circulating tumor cells in mice bearing tuberin-null xenograft tumors. E 2-induced metastasis is associated with activation of p42/44 MAPK and is completely inhibited by treatment with the MEK1/2 inhibitor, CI-1040. In vitro, E 2 inhibits anoikis of tuberin-null cells. Finally, using a bioluminescence approach, we found that E 2 enhances the survival and lung colonization of intravenously injected tuberin-null cells by 3-fold, which is blocked by treatment with CI-1040. Taken together these results reveal a new model for LAM pathogenesis in which activation of MEKdependent pathways by E 2 leads to pulmonary metastasis via enhanced survival of detached tuberin-null cells.L AM, the pulmonary manifestation of tuberous sclerosis complex (TSC), affects women almost exclusively (1). LAM affects 30Ϫ40% of women with TSC (2, 3). In a Mayo Clinic series, LAM was the third most frequent cause of TSC-related death, after renal disease and brain tumors (4). LAM can also occur in women who do not have germline mutations in TSC1 or TSC2 (sporadic LAM). LAM cells from both TSC-LAM and sporadic LAM carry inactivating mutations in both alleles of the TSC1 or TSC2 genes (5). The protein products of TSC1 and TSC2, hamartin and tuberin, respectively, form heterodimers (6, 7) that inhibit the small GTPase Ras homologue enriched in brain (Rheb), via tuberin's highly conserved GTPase activating domain. In its active form, Rheb activates the mammalian target of rapamycin (mTOR) complex 1 (TORC1), which is a key regulator of protein translation, cell size, and cell proliferation (8). Evidence of TORC1 activation, including hyperphosphorylation of ribosomal protein S6, has been observed in tumor specimens from TSC patients and LAM patients (9-11). Independent of its activation of mTOR, Rheb inhibits the activity of B-Raf and C-Raf/Raf-1 kinase, resulting in reduced phosphorylation of p42/44 MAPK (12-14), but the impact of the Raf/MEK/ MAPK pathway on disease pathogenesis is undefined.LAM is characterized pathologically by widespread proliferation of abnormal smooth muscle cells and by cystic changes within the lung parenchyma (1). About 60% of women with the sporadic form of LAM also have renal angiomyolipomas. The presence of TSC2 mutations in LAM cells and renal angiomyolipoma cells from women with sporadic LAM, but not in normal tissues, has led to the hypothesis that LAM cells spread to the lungs via a metastatic mechanism, despite the fact that LAM cells have a histologically benign appearance (15,16). Genetic and fluorescent in situ hybridization analyses of recurrent LAM after lung transplantation support this benign metastatic model (16).The female...
Lymphangioleiomyomatosis (LAM) is a progressive lung disease affecting almost exclusively women. The reasons for this strong gender predisposition are poorly understood. Renal angiomyolipomas occur in 50-60% of sporadic LAM patients. The smooth muscle cells of pulmonary LAM and renal angiomyolipomas are nearly indistinguishable morphologically. Here, we report the first successful cell culture of a LAM-associated renal angiomyolipoma. The cells carried inactivating mutations in both alleles of the TSC2 gene and expressed estrogen receptor , estrogen receptor , and androgen receptor. To elucidate the cellular pathways through which steroid hormones influence LAM pathogenesis, we treated the cells with both estradiol and tamoxifen. Cell growth was stimulated by estradiol, associated with phosphorylation of p44/42 MAPK at 5 min and an increase in c-myc expression at 4 h. Tamoxifen citrate also stimulated cell growth, associated with increased phosphorylation of p44/42 MAPK and expression of c-myc, indicating that tamoxifen has agonist effects on angiomyolipoma cells. This response to tamoxifen in human angiomyolipoma cells differs from prior studies of Eker rat leiomyoma cells, possibly reflecting cell type or species differences in cells lacking tuberin. Our data provide the first evidence that estradiol stimulates the growth of angiomyolipoma cells, that tamoxifen has agonist effects in angiomyolipoma cells, and that estradiol and tamoxifen impact both genomic and nongenomic signaling pathways in angiomyolipoma cells. The responsiveness of angiomyolipoma cells to estradiol may be related to the underlying reasons that LAM affects primarily women.
The most exciting advances in the tuberous sclerosis complex (TSC) field occurred in 1993 and 1997 with the cloning of the TSC2 and TSC1 genes, respectively, and in 2003 with the identification of Rheb as the target of tuberin's (TSC2) GTPase activating protein (GAP) domain. Rheb has a dual role: it activates mTOR and inactivates B-Raf. Activation of mTOR leads to increased protein synthesis through phosphorylation of p70S6K and 4E-BP1. Upon insulin or growth factor stimulation, tuberin is phosphorylated by several kinases, including AKT/PKB, thereby suppressing its GAP activity and activating mTOR. Phosphorylation of hamartin (TSC1) by CDK1 also negatively regulates the activity of the hamartin/tuberin complex. Despite these biochemical advances, exactly how mutations in TSC1 or TSC2 lead to the clinical manifestations of TSC is far from being understood. Two of the most unusual phenotypes in TSC are the apparent metastasis of benign cells carrying TSC1 and TSC2 mutations, resulting in pulmonary lymphangiomyomatosis, and the ability of cells with TSC1 or TSC2 mutations to differentiate into the separate components of renal angiomyolipomas (vessels, smooth muscle and fat). We will discuss how the TSC signaling pathways are affected by mutations in TSC1 or TSC2, focusing on how these mutations may lead to the renal and pulmonary manifestations of TSC. Oncogene (2005) 24, 7475-7481.
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors of the brain, kidney, heart, retina, and skin. TSC is caused by mutations in either TSC1 or TSC2, both of which are tumor suppressor genes. Hamartin, the protein product of TSC1, was found to interact with the ezrin-radixin-moesin family of cytoskeletal proteins and to activate the small GTPase Rho. To determine whether tuberin, the TSC2 product, can also activate Rho, we stably expressed full-length human tuberin in two cell types: MDCK cells and ELT3 cells. ELT3 cells lack endogenous tuberin expression. We found that expression of human tuberin in both MDCK and ELT3 cells was associated with an increase in the amount of Rho-GTP, but not in Rac1-GTP or cdc42-GTP. Tuberin expression increased cell adhesion in both cell types, and decreased chemotactic cell migration in ELT3 cells. In MDCK cells, there was a decrease in the amount of total Focal Adhesion Kinase (FAK) and an increase in the fraction of phosphorylated FAK. These findings demonstrate for the first time that tuberin activates Rho and regulates cell adhesion and migration. Pathways involving Rho activation may have relevance to the clinical manifestations of TSC, including pulmonary lymphangioleiomyomatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.