Modelling the premixed charge compression ignition (PCCI) engine requires a balanced approach that captures both fluid motion as well as low- and high-temperature fuel oxidation. A fully integrated computational fluid dynamics (CFD) and chemistry scheme (i.e. detailed chemical kinetics solved in every cell of the CFD grid) would be the ideal PCCI modelling approach, but is computationally very expensive. As a result, modelling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy. Multi-zone models have been previously shown accurately to capture geometry-dependent processes in homogeneous charge compression ignition (HCCI) engines. In the presented work, KIVA-3V is fully coupled with a multi-zone model with detailed chemical kinetics. Computational efficiency is achieved by utilizing a low-resolution discretization to solve detailed chemical kinetics in the multi-zone model compared with a relatively high-resolution CFD solution. The multi-zone model communicates with KIVA-3V at each computational timestep, as in the ideal fully integrated case. The composition of the cells, however, is mapped back and forth between KTVA-3V and the multi-zone model, introducing significant computational time savings. The methodology uses a novel re-mapping technique that can account for both temperature and composition non-uniformities in the cylinder. Validation cases were developed by solving the detailed chemistry in every cell of a KIVA-3V grid. The new methodology shows very good agreement with the detailed solutions in terms of ignition timing, burn duration, and emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.