This research tests energy optimised furnace (EOF) steel slag as substitution for natural coarse aggregate in concrete. Steel slag’s usefulness as a substitute for natural coarse aggregate in concrete is the primary goal of this research. According to IS:2386-1963, the characterization of EOF steel slag, as coarse, is done by examining the shape and size of a particle, mechanical properties, physical properties, soundness, and alkali-aggregate reactivity. Tests for detection of staining material in steel slag and hardness of inter-facial transition zone in hardened cement paste were also carried out. The chemical analysis of the steel slag reveals the stability of oxides present in the steel slag. Microstructural characterization by SEM (scanning electron microscope) analysis of steel slag aggregate was also employed to support the characterization and XRD analysis, and it was found that the EOF steel slag is crystalline. The digital image processing technique (DIP) is adopted to study the shape indices, circularity, sphericity, shape factor, and roundness of natural and EOF steel slag aggregate. According to the characterization and strength investigation, steel slag aggregate outperforms natural coarse aggregate.
Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.
The characteristics of a concrete mix are purely dependent on the hydration of cement that is carried forward by using the water quality used in the mix. Several researchers have focused on incorporating pozzolanic or nanomaterials to improve the hydration mechanisms and impart high strength to concrete. A new technology has been introduced to improve the properties of concrete by magnetic-field-treated water (MFTW). Due to magnetization, water particles become charged and the molecules inside the water cluster decrease from 13 to 5 or 6, which eventually decreases the hardness of water, thus improving the strength of concrete when compared to the use of normal water (NW). In advanced construction techniques and practices, the application of Magnetic Water (MW) plays an important role in boosting physicochemical properties. This research work focused on evaluating the standards of water quality through physiochemical analysis, such as Electrical Conductivity (EC), Viscosity, pH, and Total Dissolved Solids (TDS) with the MW at different exposure periods (60 min (MW60), 45 min (MW45), 30 min (MW30), 15 min (MW15), and instant exposure (MWI)). Experiments were carried out to evaluate the fresh, hardened, and microstructural behavior of concrete made with magnetic water (MW) using a permanent magnet of PERMAG (N407) under a field intensity of 0.9 Tesla. In addition, optical properties such as X-ray Diffraction (XRD) and Ultraviolet (UV) absorption were considered for the MW60 mix to ensure water magnetization. Characterization methods such as Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM) were employed for NWC and MWC to quantify the hydrated products. From the results, it was observed that the magnetic effect on water characteristics showed significant improvement in the concrete properties with the increase in exposure duration. There were increments of 25.6% and 24.1% in workability and compressive strength, respectively, for the MW60 mix compared to normal water concrete (NWC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.