In this model of early OA, significant changes in volume and microstructure of subchondral bone plate and trabecular bone were detected only in the femoral medial condyle, while alterations in articular cartilage properties were more severe in the lateral compartment. The former finding may be associated with reduced joint loading in the medial compartment due to ACLT, while the latter finding reflects early osteoarthritic changes in the lateral compartment.
Atomic Force Microscopy (AFM) based nanoindentation is a widely used technique for measuring mechanical properties of living cells, providing information for understanding their mechanobiological behavior. However, very local properties of cell surfaces have not been characterized earlier. The goal of this study was to develop an AFM-based technique to determine local elastic properties of bovine articular chondrocytes. The Youngs modulus of chondrocytes was 19.3 ± 5.6 kPa for spread cells and 10 ± 4.1 kPa for the round cells. The results were compared to previous studies in which different techniques were used to obtain more global properties of chondrocytes. Our findings suggest that using nanosized AFM tips, the very local cell properties can be measured.
FMEA seems to be a suitable tool in the design phase of developing medical simulators. Herein, it serves as a communication medium for knowledge transfer between the medical experts and the system developers. The method encourages a reflective process and allows identification of the most important elements and scenarios that need to be trained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.