In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained.
In allogeneic hematopoietic cell transplantation (HCT) it has been shown that over- or underexposure to conditioning agents have an impact on patient outcomes. Conditioning regimens combining busulfan (Bu) and fludarabine (Flu) with or without clofarabine (Clo) are gaining interest worldwide in HCT. To evaluate and possibly adjust full conditioning exposure a simultaneous analysis of Bu, F-ARA-A (active metabolite of Flu) and Clo in one analytical run would be of great interest. However, this is a chromatographical challenge due to the large structural differences of Bu compared to F-ARA-A and Clo. Furthermore, for the bioanalysis of drugs it is common to use stable isotope labelled standards (SILS). However, when SILS are unavailable (in case of Clo and F-ARA-A) or very expensive, standard addition may serve as an alternative to correct for recovery and matrix effects. This study describes a fast analytical method for the simultaneous analysing of Bu, Clo and F-ARA-A with liquid chromatography-tandem mass spectrometry (LC-MS/MS) including standard addition methodology using 604 spiked samples. First, the analytical method was validated in accordance with European Medicines Agency guidelines. The lower limits of quantification (LLOQ) were for Bu 10μg/L and for Clo and F-ARA-A 1μg/L, respectively. Variation coefficients of LLOQ were within 20% and for low medium and high controls were all within 15%. Comparison of Bu, Clo and F-ARA-A standard addition results correspond with those obtained with calibration standards in calf serum. In addition for Bu, results obtained by this study were compared with historical data analysed within TDM. In conclusion, an efficient method for the simultaneous quantification of Bu, Clo and F-ARA-A in plasma was developed. In addition, a robust and cost-effective method to correct for matrix interference by standard addition was established.
Lignin can be functionalized with –N–OH type mediators via laccase catalysis. Three radical coupling mechanisms are suggested for this enzymatic “hetero-functionalization” which may be a new route for biomass lignin upgrading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.