With the advent of word representations, word similarity tasks are becoming increasing popular as an evaluation metric for the quality of the representations. In this paper, we present manually annotated monolingual word similarity datasets of six Indian languages -Urdu, Telugu, Marathi, Punjabi, Tamil and Gujarati. These languages are most spoken Indian languages worldwide after Hindi and Bengali. For the construction of these datasets, our approach relies on translation and re-annotation of word similarity datasets of English. We also present baseline scores for word representation models using state-of-the-art techniques for Urdu, Telugu and Marathi by evaluating them on newly created word similarity datasets.
We present a simple, fast and unsupervised approach for exploiting morphological regularities present in high dimensional vector spaces. We propose a novel method for generating embeddings of words from their morphological variants using morphological transformation operators. We evaluate this approach on MSR word analogy test set (Mikolov et al., 2013d) with an accuracy of 85% which is 12% higher than the previous best known system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.