Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared (k P 5 m) continuum of stellar populations is dominated by the composite blackbody curve and peaks at approximately 1.6 m, the ultraviolet to mid-infrared continuum of active galactic nuclei (AGNs) is dominated by a power law. Consequently, with a sufficient wavelength baseline, one can easily distinguish AGNs from stellar populations. Mirroring the tendency of AGNs to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGNs tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. On the basis of this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGNs, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1 galaxies. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGNs and find evidence for a large population of optically obscured active galaxies.
We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on dark energy density, ρ DE (z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find Ω Λ = 0.729 +0.014 −0.014 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = −1.013 +0.068 −0.073 (68% CL). Curvature is constrained to ∼ 0.7% in the owCDM model and to ∼ 2% in a model in which dark energy is allowed to vary with parameters w 0 and w a . Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union ⋆ is less than the mass threshold. We begin by noting that.We can then integrate this probability over all true host masses less than the threshold:⋆ )P (m true ⋆ ) up to a normalization constant found by requiring the integral to be unity when integrating over all possible true masses. P (m true ⋆ ) is estimated from the observed distribution for each type of survey. The SNLS (Sullivan et al. 2010) and SDSS (Lampeitl et al. 2010) host masses were assumed to be representative of untargeted surveys, while the mass distribution in Kelly et al. (2010) was assumed typical of nearby targeted surveys. As these distributions are approximately log-normal, we use this model for P (m true ⋆) using the mean and RMS from the log of the host masses from these surveys (with the average measurement errors subtracted in quadrature), giving log 10 P (m true ⋆ ) = N (µ = 9.88, σ 2 = 0.92 2 ) for untargeted surveys and log 10 P (m true ⋆ ) = N (10.75, 0.66 2 ) for targeted surveys. When host mass measurements are available, P (m obs ⋆ |m true ⋆ ) is also modeled as a log-normal; when no measurement is available, a flat distribution is used.For a supernova from an untargeted survey with no host mass measurement (including supernovae presented in this paper which are not in a cluster), P (m trueis the integral of P (m true ⋆ ) up to the threshold mass: 0.55. Similarly, nearby supernovae from targeted surveys w...
We present a study of the connection between black hole accretion, star formation, and galaxy morphology at z ≤ 2.5. We focus on active galactic nuclei (AGNs) selected by their mid-IR power-law emission. By fitting optical to far-IR photometry with state-of-the-art spectral energy distribution (SED) techniques, we derive stellar masses, star formation rates, dust properties, and AGN contributions in galaxies over the whole COSMOS field. We find that obscured AGNs lie within or slightly above the star-forming sequence. We confirm our previous finding about compact host galaxies of obscured AGNs at z ∼ 1, and find that galaxies with 20-50% AGN contributions tend to have smaller sizes, by ∼25-50%, compared to galaxies without AGNs. Furthermore, we find that a high merger fraction of up to 0.5 is appropriate for the most luminous (log(L IR /L) ∼ 12.5) AGN hosts and non-AGN galaxies, but not for the whole obscured AGN sample. Moreover, merger fraction depends on the total and star-forming infrared luminosity, rather than the decomposed AGN infrared luminosity. Our results suggest that major mergers are not the main driver of AGN activity, and therefore obscured AGNs might be triggered by internal mechanisms, such as secular processes, disk instabilities, and compaction in a particular evolutionary stage. We make the SED modeling results publicly available.
The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg 2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 μm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.
We explore the connection between different classes of active galactic nuclei (AGNs) and the evolution of their host galaxies, by deriving host galaxy properties, clustering, and Eddington ratios of AGNs selected in the radio, X-ray, and infrared (IR) wavebands. We study a sample of 585 AGNs at 0.25 < z < 0.8 using redshifts from the AGN and Galaxy Evolution Survey (AGES). We select AGNs with observations in the radio at 1.4 GHz from the Westerbork Synthesis Radio Telescope, X-rays from the Chandra XBoötes Survey, and mid-IR from the Spitzer IRAC Shallow Survey. The radio, X-ray, and IR AGN samples show modest overlap, indicating that to the flux limits of the survey, they represent largely distinct classes of AGNs. We derive host galaxy colors and luminosities, as well as Eddington ratios, for obscured or optically faint AGNs. We also measure the two-point cross-correlation between AGNs and galaxies on scales of 0.3-10 h −1 Mpc, and derive typical dark matter halo masses. We find that: (1) radio AGNs are mainly found in luminous red sequence galaxies, are strongly clustered (with M halo ∼ 3 × 10 13 h −1 M ⊙ ), and have very low Eddington ratios (λ 10 −3 ); (2) X-rayselected AGNs are preferentially found in galaxies that lie in the "green valley" of color-magnitude space and are clustered similar to typical AGES galaxies (M halo ∼ 10 13 h −1 M ⊙ ), with 10 −3 λ 1; (3) IR AGNs reside in slightly bluer, slightly less luminous galaxies than X-ray AGNs, are weakly clustered (M halo 10 12 h −1 M ⊙ ), and have λ > 10 −2 . We interpret these results in terms of a simple model of AGN and galaxy evolution, whereby a "quasar" phase and the growth of the stellar bulge occurs when a galaxy's dark matter halo reaches a critical mass between ∼10 12 and 10 13 M ⊙ . After this event, star formation ceases and AGN accretion shifts from radiatively efficient (optical-and IR-bright) to radiatively inefficient (optically faint, radio-bright) modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.