The effect of the pin-fin shapes on the overall performance of the carbon nanotube bundles as porous micro pin-fins with in-line and staggered arrangement for the heat transfer and pressure drop is studied using FLUENT 15.0. The results of the study revealed that at 100 < Re < 2000, triangle has the best performance followed by square, rectangle, hexagon and circle in 1 mm height, 15 mm width, and 45 mm length silicon rectangular mini-channel. The staggered configuration gave better heat transfer performance than in-line arrangement at all Reynolds numbers for all shapes with up to 19% thermal improvement but with up to 79% pressure drop differential. On a mini-channel surface with nanotube fins, the nanofluid (0.001 to 1%) increases the thermal performance up to 40% in comparison with water. The best thermal performance enhancement of 106% was obtained by using staggered triangular fins with larger fin height of 0.75 mm, smaller fin width of 0.5 mm, and spacing double the fin width and 0.01% CuO-water nanofluid followed by 103% with 0.01% Al 2 O 3-water in comparison to channels with inline circular fins and water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.