Epidemiologic evidence suggests that cognitive reserve (CR) mitigates the effects of aging on cognitive function. The goal of this study was to see whether a common neural mechanism for CR could be demonstrated in brain imaging data acquired during the performance of 2 tasks with differing cognitive processing demands. Young and elder subjects were scanned with functional magnetic resonance imaging (fMRI) while performing a delayed item response task that used either letters (40 young, 18 old) or shapes (24 young, 21 old). Difficulty or load was manipulated by varying the number of stimuli that were presented for encoding. Load-dependent fMRI signal corresponding to each trial component (stimulus presentation, retention delay, and probe) and task (letter or shape) was regressed onto 2 putative CR variables. Canonical variates analysis was applied to the resulting maps of regression coefficients, separately for each trial component, to summarize the imaging data--CR relationships. There was a latent brain pattern noted in the stimulus presentation phase that manifested similar relationships between load-related encoding activation and CR variables across the letter and shape tasks in the young but not the elder age group. This spatial pattern could represent a general neural instantiation of CR that is affected by the aging process.
Three competing models of cognitive aging (neural compensation, capacity limitations, neural inefficiency) were examined in relation to working memory for novel non-verbal material. To accomplish this goal young (n=25) and old (n=25) participants performed a delayed item recognition (DIR) task while being scanned with bold fMRI. The stimuli in the DIR task consisted of computergenerated closed-curve shapes with each shape presented only once in the testing conditions of each participant. This ensured that both the novelty and appearance of the shapes maximized visual demands and limited the extent of phonologic processing. Behaviorally, as expected, the old participants were slower and less accurate compared to the young participants. Spatial patterns of brain activation that corresponded to load-dependent (stimulus set size ranged from 1 to 3) fMRI signal during the three phases of the DIR task (memory set presentation, retention delay, probe presentation) were evaluated in both age groups. Support for neural compensation and capacity limitation was evident in retention delay and the probe phase, respectively. Data were inconsistent with the neural inefficiency model. The process specific support for the theories we examined is consistent with a large corpus of research showing that the substrates underlying the encoding, retention and probe phases are different. That is, cognitive aging theories can be specific to the neural networks/regions underlying the different phases of working memory. Delineating how these theories work in concert can increase knowledge of age-related effects on working memory. KeywordsAging; Working memory; neural compensation; neural capacity; inefficiency Correspondence: Roee Holtzer, Ph.D. Ferkauf Graduate School of Psychology and Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, NY, USA. Phone: 718 430-3962; Fax: 718 430-3960; email: E-mail: rholtzer@aecom.yu.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptBrain Res. Author manuscript; available in PMC 2010 January 16. Published in final edited form as:Brain Res. 2009 January 16; 1249: 148-161. doi:10.1016/j.brainres.2008.009. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript IntroductionWorking memory refers to the retention and manipulation of information, typically in a time scale of seconds. There is almost a universal consensus that working memory is critical for a range of cognitive abilities including planning (Prabhakaran et al., 2000) reasoning (De Neys and Verschueren, 2006) lang...
The extent of task-related fMRI activation can vary as a function of task difficulty. Also the efficiency or capacity of the brain networks underlying task performance can change with aging. We asked whether the expression of a network underlying task performance would differ as a function of task demand in old and young individuals. 26 younger and 23 older healthy adults performed a delayed item recognition task that used the response signal method to parametrically manipulate the extrinsic difficulty of the task by imposing five different deadlines for recognition response. Both age groups showed a speed accuracy trade-off, but the younger group achieved greater discriminability at the longer deadlines. We identified a spatial pattern of fMRI activation during the probe phase whose expression increased as the response deadline shortened and the task became more difficult. This pattern was expressed to a greater degree by the old group at the long deadlines, when the task was easiest. By contrast, this pattern was expressed to greater degree by the younger group at the short deadlines, when the task was hardest. This suggests reduced efficiency and capacity of this network in older subjects. These findings suggest that neuroimaging studies comparing task-related activation across groups with different cognitive abilities must be interpreted in light of the relative difficulty of the task for each group.
Abstract. Are sequential visual arrays represented as separate images or as a combined image in visual short-term memory (VSTM)? Proponents of the integration account suggest that an image of the first array is gradually formed and integrated with an image of the second to produce a combined representation. This view is evidenced by successful performance in an empty-cell detection task. In this task, on a 4 ¥ 4 square matrix, 7 locations are occupied on a first array, followed by a variable interval, and then by 8 other occupied locations on a second array. Subjects' success in identifying the remaining empty cell has been taken as evidence for integration. In this study, we show that success in this task can be better accounted for by a convert-and-compare process than by an integration process. We conclude that VSTM only supports limited integration across sequential arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.