A plethora of program analysis and optimization techniques rely on linear programming at their heart. However, such techniques are often considered too slow for production use. While today's best solvers are optimized for complex problems with thousands of dimensions, linear programming, as used in compilers, is typically applied to small and seemingly trivial problems, but to many instances in a single compilation run. As a result, compilers do not benefit from decades of research on optimizing large-scale linear programming. We design a simplex solver targeted at compilers. A novel theory of transprecision computation applied from individual elements to full data-structures provides the computational foundation. By carefully combining it with optimized representations for small and sparse matrices and specialized small-coefficient algorithms, we (1) reduce memory traffic, (2) exploit wide vectors, and (3) use low-precision arithmetic units effectively. We evaluate our work by embedding our solver into a state-of-the-art integer set library and implement one essential operation, coalescing, on top of our transprecision solver. Our evaluation shows more than an order-of-magnitude speedup on the core simplex pivot operation and a mean speedup of 3.2x (vs. GMP) and 4.6x (vs. IMath) for the optimized coalescing operation. Our results demonstrate that our optimizations exploit the wide SIMD instructions of modern microarchitectures effectively. We expect our work to provide foundations for a future integer set library that uses transprecision arithmetic to accelerate compiler analyses.
Presburger arithmetic provides the mathematical core for the polyhedral compilation techniques that drive analytical cache models, loop optimization for ML and HPC, formal verification, and even hardware design. Polyhedral compilation is widely regarded as being slow due to the potentially high computational cost of the underlying Presburger libraries. Researchers typically use these libraries as powerful black-box tools, but the perceived internal complexity of these libraries, caused by the use of C as the implementation language and a focus on end-user-facing documentation, holds back broader performance-optimization efforts. With FPL, we introduce a new library for Presburger arithmetic built from the ground up in modern C++. We carefully document its internal algorithmic foundations, use lightweight C++ data structures to minimize memory management costs, and deploy transprecision computing across the entire library to effectively exploit machine integers and vector instructions. On a newly-developed comprehensive benchmark suite for Presburger arithmetic, we show a 5.4x speedup in total runtime over the state-of-the-art library isl in its default configuration and 3.6x over a variant of isl optimized with element-wise transprecision computing. We expect that the availability of a well-documented and fast Presburger library will accelerate the adoption of polyhedral compilation techniques in production compilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.